Valentina Paloschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5161814/publications.pdf

Version: 2024-02-01

all docs

758635 887659 21 595 12 17 citations h-index g-index papers 22 22 22 1043 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Changes in endocan and dermatan sulfate are associated with biomechanical properties of abdominal aortic wall during aneurysm expansion and rupture. Thrombosis and Haemostasis, 2022, , .	1.8	1
2	Chitinase 3 like 1 is a regulator of smooth muscle cell physiology and atherosclerotic lesion stability. Cardiovascular Research, 2021, 117, 2767-2780.	1.8	21
3	<i>Organ-on-a-chip technology:</i> a novel approach to investigate cardiovascular diseases. Cardiovascular Research, 2021, 117, 2742-2754.	1.8	53
4	Lenvatinib halts aortic aneurysm growth by restoring smooth muscle cell contractility. JCI Insight, 2021, 6, .	2.3	9
5	Long Noncoding RNA <i>MIAT</i> Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation, 2021, 144, 1567-1583.	1.6	82
6	Mechanistic Links between Non-Coding RNAs and Myeloid Cell Inflammation in Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1205-1211.	1.8	5
7	Altered DNA methylation indicates an oscillatory flow mediated epithelial-to-mesenchymal transition signature in ascending aorta of patients with bicuspid aortic valve. Scientific Reports, 2018, 8, 2777.	1.6	25
8	Vessel wall morphology is equivalent for different artery types and localizations of advanced human aneurysms. Histochemistry and Cell Biology, 2017, 148, 425-433.	0.8	10
9	Towards Point-of-Care Measurements Using Noncoding RNAs. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	3
10	Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of <i>LMOD1, SYNPO2, PDLIM7, PLN</i> , and <i>SYNM</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1947-1961.	1.1	64
11	Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves. Scientific Reports, 2016, 6, 35712.	1.6	36
12	Abstract 552: End Stage Human Aneurysm Disease in Different Arterial Positions is Similar, Aneurysm Induction in Mouse Models is Not. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	O
13	Aneurysm Development in Patients With a Bicuspid Aortic Valve Is Not Associated With Transforming Growth Factor-Î ² Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 973-980.	1.1	35
14	Abstract 259: Aneurysm Development in Patients With a Bicuspid Aortic Valve Is Not Associated With Transforming Growth Factor- \hat{l}^2 Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
15	Impaired Collagen Biosynthesis and Crossâ€linking in Aorta of Patients With Bicuspid Aortic Valve. Journal of the American Heart Association, 2013, 2, e000034.	1.6	53
16	Aneurysm Development in Patients With Bicuspid Aortic Valve (BAV): Possible Connection to Repair Deficiency?. Aorta, 2013, 1, 13-22.	0.1	7
17	Matrix metalloproteinase 14 and 19 expression is associated with thoracic aortic aneurysms. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 459-466.	0.4	38
18	Abstract 397: Analysis of Cell Phenotype in Relation to $TGF\hat{I}^2$ Treatment of Aortic Smooth Muscle Cells and Myofibroblasts Isolated from Aortas and Valves of Thoracic Aortic Aneurysm Patients with a Tricuspid or a Bicuspid Valve. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	1.1	0

#	Article	IF	CITATIONS
19	Unraveling Divergent Gene Expression Profiles in Bicuspid and Tricuspid Aortic Valve Patients with Thoracic Aortic Dilatation: The ASAP Study. Molecular Medicine, 2011, 17, 1365-1373.	1.9	81
20	Diverging Alternative Splicing Fingerprints in the Transforming Growth Factor- \hat{l}^2 Signaling Pathway Identified in Thoracic Aortic Aneurysms. Molecular Medicine, 2011, 17, 665-675.	1.9	24
21	Impaired Splicing of Fibronectin Is Associated With Thoracic Aortic Aneurysm Formation in Patients With Bicuspid Aortic Valve. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 691-697.	1.1	48