
## **Catherine Walsh**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/516178/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The UMIST database for astrochemistry 2012. Astronomy and Astrophysics, 2013, 550, A36.                                                                          | 5.1  | 714       |
| 2  | Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature, 2015, 526,<br>678-681.                                                         | 27.8 | 260       |
| 3  | Grain Surface Models and Data for Astrochemistry. Space Science Reviews, 2017, 212, 1-58.                                                                        | 8.1  | 177       |
| 4  | Negative lons in Space. Chemical Reviews, 2017, 117, 1765-1795.                                                                                                  | 47.7 | 176       |
| 5  | ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets. Astronomy and Astrophysics, 2017, 600, A72.            | 5.1  | 176       |
| 6  | Complex organic molecules in protoplanetary disks. Astronomy and Astrophysics, 2014, 563, A33.                                                                   | 5.1  | 169       |
| 7  | CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. Astrophysical Journal, 2010, 722, 1607-1623.                                                                         | 4.5  | 168       |
| 8  | FIRST DETECTION OF GAS-PHASE METHANOL IN A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 823, L10.                                                   | 8.3  | 166       |
| 9  | The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime. Astronomy and Astrophysics, 2015, 582, A88.        | 5.1  | 133       |
| 10 | CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION. Astrophysical Journal, 2012, 747, 114.                 | 4.5  | 123       |
| 11 | Setting the volatile composition of (exo)planet-building material. Astronomy and Astrophysics, 2016, 595, A83.                                                   | 5.1  | 123       |
| 12 | Molecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlights.<br>Astrophysical Journal, Supplement Series, 2021, 257, 1.              | 7.7  | 117       |
| 13 | ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546. Astrophysical Journal Letters, 2014, 791, L6.                                         | 8.3  | 114       |
| 14 | ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA. Astrophysical Journal Letters, 2016, 819, L7.                                    | 8.3  | 105       |
| 15 | Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes.<br>Astronomy and Astrophysics, 2018, 613, A14.                         | 5.1  | 100       |
| 16 | Hydrocarbon Anions in Interstellar Clouds and Circumstellar Envelopes. Astrophysical Journal, 2007,<br>662, L87-L90.                                             | 4.5  | 98        |
| 17 | Water in star-forming regions: physics and chemistry from clouds to disks as probed by <i>Herschel</i> spectroscopy. Astronomy and Astrophysics, 2021, 648, A24. | 5.1  | 98        |
| 18 | CO destruction in protoplanetary disk midplanes: Inside versus outside the CO snow surface.<br>Astronomy and Astrophysics, 2018, 618, A182.                      | 5.1  | 94        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya. Astrophysical Journal Letters, 2016, 829, L35.                                                                                                   | 8.3 | 90        |
| 20 | Molecules with ALMA at Planet-forming Scales (MAPS). V. CO Gas Distributions. Astrophysical Journal,<br>Supplement Series, 2021, 257, 5.                                                                                        | 7.7 | 87        |
| 21 | Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species. Astrophysical<br>Journal, 2017, 844, 71.                                                                                                    | 4.5 | 84        |
| 22 | CHEMICAL EVOLUTION OF PROTOPLANETARY DISKS—THE EFFECTS OF VISCOUS ACCRETION, TURBULENT<br>MIXING, AND DISK WINDS. Astrophysical Journal, 2011, 731, 115.                                                                        | 4.5 | 82        |
| 23 | THE EFFECTS OF MOLECULAR ANIONS ON THE CHEMISTRY OF DARK CLOUDS. Astrophysical Journal, 2009, 700, 752-761.                                                                                                                     | 4.5 | 76        |
| 24 | Cometary ices in forming protoplanetary disc midplanes. Monthly Notices of the Royal Astronomical Society, 2016, 462, 977-993.                                                                                                  | 4.4 | 73        |
| 25 | A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O <sub>2</sub> ice from clouds to discs. Monthly Notices of the Royal Astronomical Society, 2016, 462, S99-S115. | 4.4 | 70        |
| 26 | Robustness of N <sub>2</sub> H <sup>+</sup> as tracer of the CO snowline. Astronomy and Astrophysics, 2017, 599, A101.                                                                                                          | 5.1 | 70        |
| 27 | The Distribution and Excitation of CH <sub>3</sub> CN in a Solar Nebula Analog. Astrophysical Journal, 2018, 859, 131.                                                                                                          | 4.5 | 65        |
| 28 | Grand Challenges in Protoplanetary Disc Modelling. Publications of the Astronomical Society of Australia, 2016, 33, .                                                                                                           | 3.4 | 61        |
| 29 | CANDIDATE WATER VAPOR LINES TO LOCATE THE H <sub>2</sub> O SNOWLINE THROUGH HIGH-DISPERSION SPECTROSCOPIC OBSERVATIONS. I. THE CASE OF A T TAURI STAR. Astrophysical Journal, 2016, 827, 113.                                   | 4.5 | 58        |
| 30 | Molecules with ALMA at Planet-forming Scales (MAPS). IV. Emission Surfaces and Vertical Distribution of Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 4.                                                      | 7.7 | 58        |
| 31 | Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN Strategies for Synthesizing Images of<br>Molecular Line Emission in Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 2.                | 7.7 | 58        |
| 32 | Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of Radial Chemical Substructures. Astrophysical Journal, Supplement Series, 2021, 257, 3.                                                             | 7.7 | 57        |
| 33 | Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering. Astronomical<br>Journal, 2018, 155, 182.                                                                                                       | 4.7 | 56        |
| 34 | Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in<br>Multiwavelength Continuum Emission. Astrophysical Journal, Supplement Series, 2021, 257, 14.                                       | 7.7 | 56        |
| 35 | Methanol along the path from envelope to protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2014, 445, 913-929.                                                                                            | 4.4 | 55        |
| 36 | The First Detection of <sup>13</sup> C <sup>17</sup> O in a Protoplanetary Disk: A Robust Tracer of<br>Disk Gas Mass. Astrophysical Journal Letters, 2019, 882, L31.                                                            | 8.3 | 54        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Abundant Refractory Sulfur in Protoplanetary Disks. Astrophysical Journal, 2019, 885, 114.                                                                                                           | 4.5  | 52        |
| 38 | Molecules with ALMA at Planet-forming Scales (MAPS). XVIII. Kinematic Substructures in the Disks of HD 163296 and MWC 480. Astrophysical Journal, Supplement Series, 2021, 257, 18.                  | 7.7  | 51        |
| 39 | Temperature Structures of Embedded Disks: Young Disks in Taurus Are Warm. Astrophysical Journal, 2020, 901, 166.                                                                                     | 4.5  | 49        |
| 40 | Chronology of Episodic Accretion in Protostars—An ALMA Survey of the CO and H <sub>2</sub> O<br>Snowlines. Astrophysical Journal, 2019, 884, 149.                                                    | 4.5  | 47        |
| 41 | CO emission tracing a warp or radial flow within ≲100 au in the HD 100546 protoplanetary disk.<br>Astronomy and Astrophysics, 2017, 607, A114.                                                       | 5.1  | 46        |
| 42 | DISCOVERY OF INTERSTELLAR ANIONS IN CEPHEUS AND AURIGA. Astrophysical Journal Letters, 2011, 730, L18.                                                                                               | 8.3  | 42        |
| 43 | The complex chemistry of outflow cavity walls exposed: the case of low-mass protostars. Monthly<br>Notices of the Royal Astronomical Society, 2015, 451, 3836-3856.                                  | 4.4  | 42        |
| 44 | ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK.<br>Astrophysical Journal, 2016, 831, 200.                                                                      | 4.5  | 42        |
| 45 | An inherited complex organic molecule reservoir in a warm planet-hosting disk. Nature Astronomy,<br>2021, 5, 684-690.                                                                                | 10.1 | 40        |
| 46 | Molecules with ALMA at Planet-forming Scales (MAPS). VII. Substellar O/H and C/H and Superstellar<br>C/O in Planet-feeding Gas. Astrophysical Journal, Supplement Series, 2021, 257, 7.              | 7.7  | 40        |
| 47 | Water delivery from cores to disks: Deuteration as a probe of the prestellar inheritance of H <sub>2</sub> 0. Astronomy and Astrophysics, 2017, 599, A40.                                            | 5.1  | 38        |
| 48 | An Unbiased ALMA Spectral Survey of the LkCa 15 and MWC 480 Protoplanetary Disks. Astrophysical<br>Journal, 2020, 893, 101.                                                                          | 4.5  | 38        |
| 49 | Discovery of An au-scale Excess in Millimeter Emission from the Protoplanetary Disk around TW Hya.<br>Astrophysical Journal Letters, 2019, 878, L8.                                                  | 8.3  | 37        |
| 50 | Molecules with ALMA at Planet-forming Scales (MAPS). VI. Distribution of the Small Organics HCN,<br>C <sub>2</sub> H, and H <sub>2</sub> CO. Astrophysical Journal, Supplement Series, 2021, 257, 6. | 7.7  | 37        |
| 51 | The TW Hya Rosetta Stone Project. III. Resolving the Gaseous Thermal Profile of the Disk. Astrophysical<br>Journal, 2021, 908, 8.                                                                    | 4.5  | 35        |
| 52 | Sequential planet formation in the HD 100546 protoplanetary disk?. Astronomy and Astrophysics, 2015, 580, A105.                                                                                      | 5.1  | 35        |
| 53 | Candidate Water Vapor Lines to Locate the H <sub>2</sub> O Snowline Through High-dispersion<br>Spectroscopic Observations. II. The Case of a Herbig Ae Star. Astrophysical Journal, 2017, 836, 118.  | 4.5  | 34        |
| 54 | Sulphur monoxide exposes a potential molecular disk wind from the planet-hosting disk around HD<br>100546. Astronomy and Astrophysics, 2018, 611, A16.                                               | 5.1  | 34        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Upper limits on CH <sub>3</sub> OH in the HD 163296 protoplanetary disk. Astronomy and Astrophysics, 2019, 623, A124.                                                                                                                                          | 5.1 | 33        |
| 56 | Molecules with ALMA at Planet-forming Scales (MAPS). XIX. Spiral Arms, a Tail, and Diffuse Structures<br>Traced by CO around the GM Aur Disk. Astrophysical Journal, Supplement Series, 2021, 257, 19.                                                         | 7.7 | 33        |
| 57 | Resolving structure of the disc around HD100546 at 7Âmm with ATCA. Monthly Notices of the Royal<br>Astronomical Society, 2015, 453, 414-438.                                                                                                                   | 4.4 | 32        |
| 58 | A low-mass protostar's disk-envelope interface: disk-shadowing evidence from ALMA<br>DCO <sup>+</sup> observations of VLA1623. Astronomy and Astrophysics, 2015, 579, A114.                                                                                    | 5.1 | 32        |
| 59 | Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich ACB stars.<br>Astronomy and Astrophysics, 2016, 588, A4.                                                                                                               | 5.1 | 31        |
| 60 | Probing midplane CO abundance and gas temperature with DCO <sup>+</sup> in the protoplanetary disk around HD 169142. Astronomy and Astrophysics, 2018, 614, A106.                                                                                              | 5.1 | 31        |
| 61 | Photodesorption of H <sub>2</sub> 0, HDO, and D <sub>2</sub> 0 ice and its impact on fractionation.<br>Astronomy and Astrophysics, 2015, 575, A121.                                                                                                            | 5.1 | 30        |
| 62 | Molecules with ALMA at Planet-forming Scales (MAPS). IX. Distribution and Properties of the Large<br>Organic Molecules HC <sub>3</sub> N, CH <sub>3</sub> CN, and c-C <sub>3</sub> H <sub>2</sub> .<br>Astrophysical Journal, Supplement Series, 2021, 257, 9. | 7.7 | 30        |
| 63 | Molecules with ALMA at Planet-forming Scales (MAPS). XII. Inferring the C/O and S/H Ratios in<br>Protoplanetary Disks with Sulfur Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 12.                                                          | 7.7 | 30        |
| 64 | Photodissociation and chemistry of N <sub>2</sub> in the circumstellar envelope of carbon-rich AGB stars. Astronomy and Astrophysics, 2014, 568, A111.                                                                                                         | 5.1 | 29        |
| 65 | Dust Continuum Emission and the Upper Limit Fluxes of Submillimeter Water Lines of the<br>Protoplanetary Disk around HD 163296 Observed by ALMA. Astrophysical Journal, 2019, 875, 96.                                                                         | 4.5 | 28        |
| 66 | MOLECULAR LINE EMISSION FROM A PROTOPLANETARY DISK IRRADIATED EXTERNALLY BY A NEARBY MASSIVE STAR. Astrophysical Journal Letters, 2013, 766, L23.                                                                                                              | 8.3 | 27        |
| 67 | The composition of hot Jupiter atmospheres assembled within chemically evolved protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2229-2244.                                                                                  | 4.4 | 27        |
| 68 | Water in low-mass star-forming regions with <i>Herschel</i> . Astronomy and Astrophysics, 2014, 572, A81.                                                                                                                                                      | 5.1 | 26        |
| 69 | Molecules with ALMA at Planet-forming Scales. XX. The Massive Disk around GM Aurigae. Astrophysical<br>Journal, Supplement Series, 2021, 257, 20.                                                                                                              | 7.7 | 26        |
| 70 | Probing Episodic Accretion in Very Low Luminosity Objects. Astrophysical Journal, 2018, 854, 15.                                                                                                                                                               | 4.5 | 25        |
| 71 | Cometary compositions compared with protoplanetary disk midplane chemical evolution. Astronomy and Astrophysics, 2019, 629, A84.                                                                                                                               | 5.1 | 25        |
| 72 | Molecules with ALMA at Planet-forming Scales (MAPS). XI. CN and HCN as Tracers of Photochemistry in<br>Disks. Astrophysical Journal, Supplement Series, 2021, 257, 11.                                                                                         | 7.7 | 25        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | THE DISSOCIATIVE RECOMBINATION OF PROTONATED ACRYLONITRILE,<br>CH <sub>2</sub> CHCNH <sup>+</sup> , WITH IMPLICATIONS FOR THE NITRILE CHEMISTRY IN DARK<br>MOLECULAR CLOUDS AND THE UPPER ATMOSPHERE OF TITAN. Astrophysical Journal, 2009, 695, 317-324.       | 4.5 | 24        |
| 74 | Molecules with ALMA at Planet-forming Scales (MAPS). XIII. HCO <sup>+</sup> and Disk Ionization Structure. Astrophysical Journal, Supplement Series, 2021, 257, 13.                                                                                             | 7.7 | 24        |
| 75 | Complex organic molecules along the accretion flow in isolated and externally irradiated protoplanetary disks. Faraday Discussions, 2014, 168, 389-421.                                                                                                         | 3.2 | 23        |
| 76 | CH abundance gradient in TMC-1. Astronomy and Astrophysics, 2011, 531, A121.                                                                                                                                                                                    | 5.1 | 22        |
| 77 | Linking interstellar and cometary O <sub>2</sub> : a deep search for <sup>16</sup> O <sup>18</sup> O in the solar-type protostar IRAS 16293–2422. Astronomy and Astrophysics, 2018, 618, A11.                                                                   | 5.1 | 22        |
| 78 | Molecules with ALMA at Planet-forming Scales (MAPS). VIII. CO Gap in AS 209—Gas Depletion or<br>Chemical Processing?. Astrophysical Journal, Supplement Series, 2021, 257, 8.                                                                                   | 7.7 | 22        |
| 79 | ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis<br>Majoris. Astronomy and Astrophysics, 2016, 592, A76.                                                                                                         | 5.1 | 21        |
| 80 | Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase. Astronomy and Astrophysics, 2018, 612, A88.                                                                                                                                | 5.1 | 21        |
| 81 | Molecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing Protoplanetary Disk Structure within 20 au. Astrophysical Journal, Supplement Series, 2021, 257, 15.                                                                                           | 7.7 | 21        |
| 82 | Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRASA20126+4104. Monthly Notices of the Royal Astronomical Society, 0, , stx004.                                                                                   | 4.4 | 20        |
| 83 | Molecules with ALMA at Planet-forming Scales (MAPS). XVI. Characterizing the Impact of the<br>Molecular Wind on the Evolution of the HD 163296 System. Astrophysical Journal, Supplement Series,<br>2021, 257, 16.                                              | 7.7 | 20        |
| 84 | Observing substructure in circumstellar discs around massive young stellar objects. Monthly<br>Notices of the Royal Astronomical Society, 2019, 482, 4673-4686.                                                                                                 | 4.4 | 19        |
| 85 | The Effect of Carbon Grain Destruction on the Chemical Structure of Protoplanetary Disks.<br>Astrophysical Journal, 2019, 870, 129.                                                                                                                             | 4.5 | 19        |
| 86 | The TW Hya Rosetta Stone Project. II. Spatially Resolved Emission of Formaldehyde Hints at<br>Low-temperature Gas-phase Formation. Astrophysical Journal, 2021, 906, 111.                                                                                       | 4.5 | 19        |
| 87 | DISSOCIATIVE RECOMBINATION OF PROTONATED FORMIC ACID: IMPLICATIONS FOR MOLECULAR CLOUD AND COMETARY CHEMISTRY. Astrophysical Journal, 2010, 709, 1429-1434.                                                                                                     | 4.5 | 19        |
| 88 | Molecules with ALMA at Planet-forming Scales (MAPS). XVII. Determining the 2D Thermal Structure of the HD 163296 Disk. Astrophysical Journal, Supplement Series, 2021, 257, 17.                                                                                 | 7.7 | 19        |
| 89 | Candidate Water Vapor Lines to Locate the H <sub>2</sub> O Snowline through High-dispersion<br>Spectroscopic Observations. III. Submillimeter H <sub>2</sub> <sup>16</sup> O and H <sub>2</sub><br><sup>18</sup> O Lines. Astrophysical Journal, 2018, 855, 62. | 4.5 | 18        |
| 90 | The Nitrogen Carrier in Inner Protoplanetary Disks. Astrophysical Journal, 2019, 874, 92.                                                                                                                                                                       | 4.5 | 18        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | X-ray-induced chemistry of water and related molecules in low-mass protostellar envelopes.<br>Astronomy and Astrophysics, 2021, 650, A180.                                                                       | 5.1 | 18        |
| 92  | Formation of cometary O <sub>2</sub> ice and related ice species on grain surfaces in the midplane of the pre-solar nebula. Astronomy and Astrophysics, 2019, 621, A75.                                          | 5.1 | 17        |
| 93  | The TW Hya Rosetta Stone Project. I. Radial and Vertical Distributions of DCN and DCO <sup>+</sup> .<br>Astronomical Journal, 2021, 161, 38.                                                                     | 4.7 | 16        |
| 94  | Chemical modelling of dust–gas chemistry within AGB outflows – I. Effect on the gas-phase chemistry.<br>Monthly Notices of the Royal Astronomical Society, 2019, 490, 2023-2041.                                 | 4.4 | 15        |
| 95  | Molecules with ALMA at Planet-forming Scales (MAPS). X. Studying Deuteration at High Angular<br>Resolution toward Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 10.                 | 7.7 | 15        |
| 96  | High Spatial Resolution Observations of Molecular Lines toward the Protoplanetary Disk around TW<br>Hya with ALMA. Astrophysical Journal, 2021, 914, 113.                                                        | 4.5 | 14        |
| 97  | Chemical signatures of a warped protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4821-4837.                                                                                    | 4.4 | 13        |
| 98  | A revised lower estimate of ozone columns during Earth's oxygenated history. Royal Society Open<br>Science, 2022, 9, 211165.                                                                                     | 2.4 | 13        |
| 99  | Observing protoplanetary discs with the Square Kilometre Array – I. Characterizing pebble<br>substructure caused by forming planets. Monthly Notices of the Royal Astronomical Society, 2020,<br>498, 5116-5127. | 4.4 | 11        |
| 100 | The chemistry of extragalactic carbon stars. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2689-2702.                                                                                            | 4.4 | 10        |
| 101 | The TW Hya Rosetta Stone Project IV: A Hydrocarbon-rich Disk Atmosphere. Astrophysical Journal,<br>2021, 911, 29.                                                                                                | 4.5 | 10        |
| 102 | Dissociative Recombination of D3S+: Product Branching Fractions and Absolute Cross Sections.<br>Astrophysical Journal, 2008, 681, 1717-1724.                                                                     | 4.5 | 9         |
| 103 | Complex cyanides as chemical clocks in hot cores. Astronomy and Astrophysics, 2018, 616, A67.                                                                                                                    | 5.1 | 9         |
| 104 | First detections of H <sup>13</sup> CO <sup>+</sup> and HC <sup>15</sup> N in the disk around HD<br>97048. Astronomy and Astrophysics, 2019, 629, A75.                                                           | 5.1 | 9         |
| 105 | Organic molecular anions in interstellar and circumstellar environments. Proceedings of the<br>International Astronomical Union, 2008, 4, 157-160.                                                               | 0.0 | 8         |
| 106 | Dissociative recombination of the acetaldehyde cation, CH3CHO+. Physical Chemistry Chemical Physics, 2010, 12, 11670.                                                                                            | 2.8 | 8         |
| 107 | Methanol formation in TWÂHya and future prospects for detecting larger complex molecules in disks<br>with ALMA. Proceedings of the International Astronomical Union, 2017, 13, 395-402.                          | 0.0 | 7         |
| 108 | VLA cm-wave survey of young stellar objects in the Oph A cluster: constraining extreme UV- and<br>X-ray-driven disk photoevaporation. Astronomy and Astrophysics, 2019, 631, A58.                                | 5.1 | 6         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Chemical modelling of dust–gas chemistry within AGB outflows – II. Effect of the dust-grain size distribution. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1650-1665.                 | 4.4 | 6         |
| 110 | Unveiling the outer dust disc of TW Hya with deep ALMA observations. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2022, 515, L23-L28.                                                 | 3.0 | 6         |
| 111 | Chemical modelling of dust–gas chemistry within AGB outflows – III. Photoprocessing of the ice and return to the ISM. Monthly Notices of the Royal Astronomical Society, 2020, 501, 491-506.            | 4.4 | 5         |
| 112 | ALMA High-resolution Multiband Analysis for the Protoplanetary Disk around TW Hya. Astrophysical<br>Journal, 2022, 928, 49.                                                                             | 4.5 | 5         |
| 113 | Astrochemical modelling of infrared dark clouds. Astronomy and Astrophysics, 2022, 662, A39.                                                                                                            | 5.1 | 5         |
| 114 | Different molecular filament widths as tracers of accretion on to filaments. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1244-1253.                                                   | 4.4 | 4         |
| 115 | On the origin of O2 and other volatile species in comets. Proceedings of the International Astronomical Union, 2017, 13, 187-195.                                                                       | 0.0 | 3         |
| 116 | Fevering Interstellar Ices Have More CH <sub>3</sub> OD. ACS Earth and Space Chemistry, 2022, 6, 1171-1188.                                                                                             | 2.7 | 3         |
| 117 | Cosmic Rays, UV Photons, and Haze Formation in the Upper Atmospheres of Hot Jupiters. Proceedings of the International Astronomical Union, 2013, 8, 303-304.                                            | 0.0 | 2         |
| 118 | Surface astrochemistry: a computational chemistry perspective. Proceedings of the International Astronomical Union, 2017, 13, 293-304.                                                                  | 0.0 | 2         |
| 119 | Hot core chemistry in young stellar objects: protoplanetary disks and outflows. EAS Publications<br>Series, 2011, 52, 229-234.                                                                          | 0.3 | 1         |
| 120 | Unraveling the Dust Formation Process in R Dor. EAS Publications Series, 2015, 71-72, 255-257.                                                                                                          | 0.3 | 1         |
| 121 | Water in Protoplanetary Disks. Proceedings of the International Astronomical Union, 2012, 8, 235-237.                                                                                                   | 0.0 | 0         |
| 122 | An end-to-end Far-infrared Interferometer Instrument Simulator (FIInS). Proceedings of SPIE, 2014, , .                                                                                                  | 0.8 | 0         |
| 123 | Highlights from Faraday Discussion 168: Astrochemistry of Dust, Ice and Gas, Leiden, The Netherlands,<br>April 2014. Chemical Communications, 2014, 50, 13636-13644.                                    | 4.1 | 0         |
| 124 | Chemical complexity in protoplanetary disks in the era of ALMA and Rosetta. EAS Publications Series, 2015, 75-76, 315-320.                                                                              | 0.3 | 0         |
| 125 | Interstellar Methanol from the Lab to Protoplanetary Disks. Proceedings of the International Astronomical Union, 2015, 11, .                                                                            | 0.0 | 0         |
| 126 | Possibility to locate the position of the H <sub>2</sub> O snowline in protoplanetary disks through spectroscopic observations. Proceedings of the International Astronomical Union, 2017, 13, 113-120. | 0.0 | 0         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Chemical evolution in planet-forming regions. Impact on volatile abundances and C/O ratios of planet-building material. Proceedings of the International Astronomical Union, 2017, 13, 69-72.           | 0.0 | 0         |
| 128 | Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction. Proceedings of the International Astronomical Union, 2018, 14, 289-290.                                              | 0.0 | 0         |
| 129 | ALMA observations of sulfur-bearing molecules in protoplanetary disks. Proceedings of the<br>International Astronomical Union, 2018, 14, 360-361.                                                       | 0.0 | 0         |
| 130 | Possibility to locate the position of the H <sub>2</sub> O snowline in protoplanetary disks through spectroscopic observations. Proceedings of the International Astronomical Union, 2018, 14, 393-395. | 0.0 | 0         |
| 131 | Complex organic molecules tracing the comet-forming zones in protoplanetary disks. Proceedings of the International Astronomical Union, 2019, 15, 463-464.                                              | 0.0 | Ο         |
| 132 | Molecular line emission from planet-forming Herbig Ae disks. Proceedings of the International Astronomical Union, 2019, 15, 384-385.                                                                    | 0.0 | 0         |
| 133 | Tracing the disk, envelope and outflow cavity of VLA1623 with ALMA. EAS Publications Series, 2015, 75-76, 287-288.                                                                                      | 0.3 | 0         |
| 134 | Water transport from collapsing prestellar cores to forming disks: evolution of the HDO/H2O ratio.<br>EAS Publications Series, 2015, 75-76, 259-263.                                                    | 0.3 | 0         |