Tao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5161652/publications.pdf

Version: 2024-02-01

		394421	414414
50	1,169	19	32
papers	citations	h-index	g-index
51	51	51	2030
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Immunotherapy for Malignant Glioma: Current Status and Future Directions. Trends in Pharmacological Sciences, 2020, 41, 123-138.	8.7	121
2	The Challenges and the Promise of Molecular Targeted Therapy in Malignant Gliomas. Neoplasia, 2015, 17, 239-255.	5. 3	114
3	Variations in the requirement for v-SNAREs in GLUT4 trafficking in adipocytes. Journal of Cell Science, 2009, 122, 3472-3480.	2.0	69
4	MicroRNA-326 Functions as a Tumor Suppressor in Glioma by Targeting the Nin One Binding Protein (NOB1). PLoS ONE, 2013, 8, e68469.	2.5	64
5	Overexpression of Golgi phosphoprotein-3 (GOLPH3) in glioblastoma multiforme is associated with worse prognosis. Journal of Neuro-Oncology, 2012, 110, 195-203.	2.9	53
6	VAMP8 facilitates cellular proliferation and temozolomide resistance in human glioma cells. Neuro-Oncology, 2015, 17, 407-418.	1.2	51
7	Effects of bevacizumab plus irinotecan on response and survival in patients with recurrent malignant glioma: a systematic review and survival-gain analysis. BMC Cancer, 2010, 10, 252.	2.6	48
8	Prophylactic antibiotic treatment in acute necrotizing pancreatitis: Results from a meta-analysis. Scandinavian Journal of Gastroenterology, 2008, 43, 1249-1258.	1.5	47
9	Gene Fusion in Malignant Glioma: An Emerging Target for Next-Generation Personalized Treatment. Translational Oncology, 2018, 11, 609-618.	3.7	40
10	LGALS3 Promotes Treatment Resistance in Glioblastoma and Is Associated with Tumor Risk and Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 760-769.	2.5	36
11	Carboxyl terminus of Hsp70â€interacting protein (CHIP) contributes to human glioma oncogenesis. Cancer Science, 2011, 102, 959-966.	3.9	35
12	LIN28 Is Involved in Glioma Carcinogenesis and Predicts Outcomes of Glioblastoma Multiforme Patients. PLoS ONE, 2014, 9, e86446.	2.5	31
13	Circular <scp>RNA</scp> hsa_circ_0008344 regulates glioblastoma cell proliferation, migration, invasion, and apoptosis. Journal of Clinical Laboratory Analysis, 2018, 32, e22454.	2.1	29
14	High expression of N-myc (and STAT) interactor predicts poor prognosis and promotes tumor growth in human glioblastoma. Oncotarget, 2015, 6, 4901-4919.	1.8	29
15	The Current State of Radiomics for Meningiomas: Promises and Challenges. Frontiers in Oncology, 2020, 10, 567736.	2.8	28
16	SAMSN1 Is Highly Expressed and Associated with a Poor Survival in Glioblastoma Multiforme. PLoS ONE, 2013, 8, e81905.	2.5	27
17	Hydrogen-Rich Saline Promotes Survival of Retinal Ganglion Cells in a Rat Model of Optic Nerve Crush. PLoS ONE, 2014, 9, e99299.	2.5	26
18	CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia–reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation. Cancer Biology and Therapy, 2021, 22, 30-39.	3.4	25

#	Article	IF	Citations
19	HMGN5: a potential oncogene in gliomas. Journal of Neuro-Oncology, 2011, 104, 729-736.	2.9	22
20	Overexpression of SLC7A7 predicts poor progression-free and overall survival in patients with glioblastoma. Medical Oncology, 2013, 30, 384.	2.5	22
21	MicroRNAs in human glioblastoma from bench to beside. Frontiers in Bioscience - Landmark, 2015, 20, 105-118.	3.0	21
22	Expression profile of circular RNAs in IDH-wild type glioblastoma tissues. Clinical Neurology and Neurosurgery, 2018, 171, 168-173.	1.4	18
23	Survival of Ventricular and Periventricular High-Grade Gliomas: A Surveillance, Epidemiology, and End Results Program–Based Study. World Neurosurgery, 2018, 111, e323-e334.	1.3	15
24	Overexpression of G-protein-coupled receptors 65 in glioblastoma predicts poor patient prognosis. Clinical Neurology and Neurosurgery, 2018, 164, 132-137.	1.4	15
25	High Bone Sialoprotein (BSP) Expression Correlates with Increased Tumor Grade and Predicts a Poorer Prognosis of High-Grade Glioma Patients. PLoS ONE, 2012, 7, e48415.	2.5	15
26	VSIG4 is highly expressed and correlated with poor prognosis of high-grade glioma patients. American Journal of Translational Research (discontinued), 2015, 7, 1172-80.	0.0	15
27	LncRNA EWSAT1 upregulates CPEB4 via miR-330-5p to promote cervical cancer development. Molecular and Cellular Biochemistry, 2020, 471, 177-188.	3.1	14
28	The E3 ubiquitin ligase CHIP/miR-92b/PTEN regulatory network contributes to tumorigenesis of glioblastoma. American Journal of Cancer Research, 2017, 7, 289-300.	1.4	14
29	PPAR- \hat{I}^3 promotes p38 MAP kinase-mediated endothelial cell permeability through activating Sirt3. BMC Neurology, 2019, 19, 289.	1.8	12
30	Circ_0000647 promotes cell injury by modulating miR-126-5p/TRAF3 axis in oxygen-glucose deprivation and reperfusion-induced SK-N-SH cell model. International Immunopharmacology, 2022, 104, 108464.	3.8	12
31	Remote ischemic preconditioning protects neurocognitive function of rats following cerebral hypoperfusion. Medical Science Monitor, 2011, 17, BR299-BR304.	1.1	11
32	High expression of WDR1 in primary glioblastoma is associated with poor prognosis. American Journal of Translational Research (discontinued), 2016, 8, 1253-64.	0.0	11
33	Neurosurgical Postgraduate Training in China: Moving Toward a National Training Standard. World Neurosurgery, 2016, 96, 410-416.	1.3	10
34	Effects of mid-myocardial pacing on transmural dispersion of repolarization and arrhythmogenesis. Europace, 2012, 14, 1363-1368.	1.7	9
35	Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel. Drug Delivery, 2021, 28, 499-509.	5.7	9
36	CXCL4 promoted the production of CD4 ⁺ CD25 ⁺ FOXP3 ⁺ treg cells in mouse sepsis model through regulating STAT5/FOXP3 pathway. Autoimmunity, 2020, 53, 289-296.	2.6	8

#	Article	IF	CITATIONS
37	CDC42EP3 promotes glioma progression via regulation of CCND1. Cell Death and Disease, 2022, 13, 290.	6.3	8
38	Identification of CDKL3 as a critical regulator in development of glioma through regulating RRM2 and the JNK signaling pathway. Cancer Science, 2021, 112, 3150-3162.	3.9	7
39	CPEB4 regulates glioblastoma cell proliferation and predicts poor outcome of patients. Clinical Neurology and Neurosurgery, 2018, 169, 92-97.	1.4	6
40	Anterior Clinoidal Meningiomas: Meningeal Anatomical Considerations and Surgical Implications. Frontiers in Oncology, 2020, 10, 634.	2.8	6
41	Transtubular Evacuation of Hypertensive Intracerebral Hemorrhage with Limited Equipment. World Neurosurgery, 2018, 120, 27.	1.3	4
42	Preoperative identification of the initial burr hole site in retrosigmoid craniotomies: A teaching and technical note. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15, e1987.	2.3	4
43	High expression of TIG3 predicts poor survival in patients with primary glioblastoma. Tumor Biology, 2017, 39, 101042831771213.	1.8	2
44	Resection of a Meningioma at Craniocervical Junction through Far Lateral Approach: Two-Dimensional Operative Video. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, S358-S359.	0.8	1
45	Transclinoid-Transcavernous Approach to a Giant Cavernous Sinus Hemangioma: 2-Dimensional Operative Video. World Neurosurgery, 2019, 122, 453.	1.3	1
46	A reply to Petrov & Somana. Scandinavian Journal of Gastroenterology, 2009, 44, 639-640.	1.5	0
47	An unusual skull lesion in a hepatitis B infected patient. Digestive and Liver Disease, 2010, 42, 304.	0.9	0
48	In vivo effects of mid-myocardial pacing on transmural dispersion of repolarization and conduction in canines. IJC Heart and Vasculature, 2015, 6, 76-80.	1.1	0
49	Retrosigmoid Approach for Resecting a Giant Lateral Pontine Ependymoma: Two-Dimensional Operative Video. Journal of Neurological Surgery, Part B: Skull Base, 2021, 82, S53-S54.	0.8	0
50	Repairing Injured Optic Nerve of Rat with Several Therapies. FASEB Journal, 2015, 29, 707.2.	0.5	0