
John P Sumpter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5161402/publications.pdf Version: 2024-02-01

IOHN D SUMDTED

#	Article	IF	CITATIONS
1	Pharmaceuticals in the Aquatic Environment: No Answers Yet to the Major Questions. Environmental Toxicology and Chemistry, 2024, 43, 589-594.	2.2	8
2	Environmental Occurrence and Predicted Pharmacological Risk to Freshwater Fish of over 200 Neuroactive Pharmaceuticals in Widespread Use. Toxics, 2022, 10, 233.	1.6	19
3	Renewing and improving the environmental risk assessment of chemicals. Science of the Total Environment, 2022, 845, 157256.	3.9	6
4	The Weightâ€ofâ€Evidence Approach and the Need for Greater International Acceptance of Its Use in Tackling Questions of Chemical Harm to the Environment. Environmental Toxicology and Chemistry, 2021, 40, 2968-2977.	2.2	8
5	A comprehensive aquatic risk assessment of the beta-blocker propranolol, based on the results of over 600 research papers. Science of the Total Environment, 2021, 793, 148617.	3.9	17
6	The Future of the Weightâ€ofâ€Evidence Approach: A Response to Suter's Comments. Environmental Toxicology and Chemistry, 2021, 40, 2947-2949.	2.2	0
7	Learning from the past and considering the future of chemicals in the environment. Science, 2020, 367, 384-387.	6.0	146
8	Improving environmental risk assessments of chemicals: Steps towards evidence-based ecotoxicology. Environment International, 2019, 128, 210-217.	4.8	24
9	What makes a good scientist? Karl Fent as an example. Journal of Hazardous Materials, 2019, 376, 233-238.	6.5	4
10	A restatement of the natural science evidence base on the effects of endocrine disrupting chemicals on wildlife. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182416.	1.2	37
11	Scientific integrity issues in Environmental Toxicology and Chemistry: Improving research reproducibility, credibility, and transparency. Integrated Environmental Assessment and Management, 2019, 15, 320-344.	1.6	29
12	The consequences of exposure to mixtures of chemicals: Something from †nothing' and †a lot from a little' when fish are exposed to steroid hormones. Science of the Total Environment, 2018, 619-620, 1482-1492.	3.9	135
13	An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment. Science of the Total Environment, 2017, 599-600, 1372-1381.	3.9	100
14	What Makes a Concentration Environmentally Relevant? Critique and a Proposal. Environmental Science & Technology, 2017, 51, 11520-11521.	4.6	29
15	Are we going about chemical risk assessment for the aquatic environment the wrong way?. Environmental Toxicology and Chemistry, 2016, 35, 1609-1616.	2.2	35
16	Testing the "read-across hypothesis―by investigating the effects of ibuprofen on fish. Chemosphere, 2016, 163, 592-600.	4.2	23
17	Comments on Niemuth, N.J. and Klaper, R.D. 2015. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 135, 38–45. Chemosphere, 2016, 165, 566-569.	4.2	6
18	From single chemicals to mixtures—Reproductive effects of levonorgestrel and ethinylestradiol on the fathead minnow. Aquatic Toxicology, 2015, 169, 152-167.	1.9	69

JOHN P SUMPTER

#	Article	IF	CITATIONS
19	Quantitative Cross-Species Extrapolation between Humans and Fish: The Case of the Anti-Depressant Fluoxetine. PLoS ONE, 2014, 9, e110467.	1.1	116
20	Principles of Sound Ecotoxicology. Environmental Science & amp; Technology, 2014, 48, 3100-3111.	4.6	133
21	Do Concentrations of Ethinylestradiol, Estradiol, and Diclofenac in European Rivers Exceed Proposed EU Environmental Quality Standards?. Environmental Science & Technology, 2013, 47, 12297-12304.	4.6	135
22	The occurrence, causes, and consequences of estrogens in the aquatic environment. Environmental Toxicology and Chemistry, 2013, 32, 249-251.	2.2	87
23	The Read-Across Hypothesis and Environmental Risk Assessment of Pharmaceuticals. Environmental Science & Technology, 2013, 47, 11384-11395.	4.6	187
24	Several Synthetic Progestins with Different Potencies Adversely Affect Reproduction of Fish. Environmental Science & Technology, 2013, 47, 2077-2084.	4.6	152
25	Reproductive responses in fathead minnow and Japanese medaka following exposure to a synthetic progestin, Norethindrone. Aquatic Toxicology, 2010, 99, 256-262.	1.9	129
26	Exposure assessment of 17αâ€ethinylestradiol in surface waters of the United States and Europe. Environmental Toxicology and Chemistry, 2009, 28, 2725-2732.	2.2	86
27	Derivation of an Aquatic Predicted No-Effect Concentration for the Synthetic Hormone, 17α-Ethinyl Estradiol. Environmental Science & Technology, 2008, 42, 7046-7054.	4.6	221
28	Evidence of Estrogenic Mixture Effects on the Reproductive Performance of Fish. Environmental Science & Technology, 2007, 41, 337-344.	4.6	170
29	Lessons from Endocrine Disruption and Their Application to Other Issues Concerning Trace Organics in the Aquatic Environment. Environmental Science & amp; Technology, 2005, 39, 4321-4332.	4.6	362
30	Relative Potencies and Combination Effects of Steroidal Estrogens in Fish. Environmental Science & Technology, 2003, 37, 1142-1149.	4.6	427
31	Effects of the synthetic estrogen 17αâ€ethinylestradiol on the lifeâ€cycle of the fathead minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2001, 20, 1216-1227.	2.2	577
32	Estrogenicity of alkylphenolic compounds: A 3â€Ð structure—activity evaluation of gene activation. Environmental Toxicology and Chemistry, 2000, 19, 1727-1740.	2.2	27
33	Estrogenic potency of effluent from two sewage treatment works in the United Kingdom. Environmental Toxicology and Chemistry, 1999, 18, 932-937.	2.2	142
34	ESTROGENIC POTENCY OF EFFLUENT FROM TWO SEWAGE TREATMENT WORKS IN THE UNITED KINGDOM. Environmental Toxicology and Chemistry, 1999, 18, 932.	2.2	8
35	Induction of Rainbow Trout Estradiol Receptor mRNA and Vitellogenin mRNA by Phytoestrogens in Hepatocyte Culturesa. Annals of the New York Academy of Sciences, 1998, 839, 600-601.	1.8	8
36	Exposure of female juvenile rainbow trout to alkylphenolic compounds results in modifications to growth and ovosomatic index. Environmental Toxicology and Chemistry, 1998, 17, 679-686.	2.2	135

JOHN P SUMPTER

#	Article	IF	CITATIONS
37	Widespread Sexual Disruption in Wild Fish. Environmental Science & Technology, 1998, 32, 2498-2506.	4.6	1,723
38	Molecular Characterization and Expression of two Ovarian Lipoprotein Receptors in the Rainbow Trout, Oncorhynchus mykiss 1. Biology of Reproduction, 1998, 58, 1146-1153.	1.2	79
39	EXPOSURE OF FEMALE JUVENILE RAINBOW TROUT TO ALKYLPHENOLIC COMPOUNDS RESULTS IN MODIFICATIONS TO GROWTH AND OVOSOMATIC INDEX. Environmental Toxicology and Chemistry, 1998, 17, 679.	2.2	6
40	Egg quality in fish: what makes a good egg?. Reviews in Fish Biology and Fisheries, 1997, 7, 387-416.	2.4	638
41	Inhibition of testicular growth in rainbow trout <i>(Oncorhynchus mykiss)</i> exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry, 1996, 15, 194-202.	2.2	1,104
42	Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry, 1996, 15, 241-248.	2.2	1,301
43	A survey of estrogenic activity in United Kingdom inland waters. Environmental Toxicology and Chemistry, 1996, 15, 1993-2002.	2.2	350
44	Validation of Radioimmunoassays for Two Salmon Gonadotropins (GTH I and GTH II) and Their Plasma Concentrations Throughout the Reproductive Cycle in Male and Female Rainbow Trout (Oncorhynchus Mykiss)1. Biology of Reproduction, 1996, 54, 1375-1382.	1.2	291
45	Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. , 1996, 15, 241.		70
46	A survey of estrogenic activity in United Kingdom inland waters. , 1996, 15, 1993.		18
47	The purification and partial characterization of carp, Cyprinus carpio, vitellogenin. Fish Physiology and Biochemistry, 1990, 8, 111-120.	0.9	48
48	The development of a radioimmunoassay for carp, Cyprinus carpio, vitellogenin. Fish Physiology and Biochemistry, 1990, 8, 129-140.	0.9	65
49	Selectivity of protein sequestration by vitellogenic oocytes of the rainbow trout,Salmo gairdneri. The Journal of Experimental Zoology, 1988, 248, 199-206.	1.4	57