Bibekananda De

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5161254/publications.pdf

Version: 2024-02-01

28 papers 1,902 citations

18 h-index 27 g-index

29 all docs 29 docs citations

29 times ranked 2562 citing authors

#	Article	IF	Citations
1	Applications of Supercapacitors. Springer Series in Materials Science, 2020, , 341-350.	0.4	59
2	Capacitor to Supercapacitor. Springer Series in Materials Science, 2020, , 53-89.	0.4	33
3	Transition Metal Oxide/Carbon Nanotube Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 245-270.	0.4	12
4	Transition Metal Oxide/Graphene/Reduced Graphene Oxide Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 297-331.	0.4	15
5	Transition Metal Oxide/Electronically Conducting Polymer Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 353-385.	0.4	13
6	Recent Trends in Supercapacitor Electrode Materials and Devices. Springer Series in Materials Science, 2020, , 435-461.	0.4	4
7	Carbon Nanofiber as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 179-200.	0.4	20
8	Transition Metal Oxide/Carbon Nanofiber Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 201-227.	0.4	14
9	Carbon Nanotube as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 229-243.	0.4	21
10	Facile Development Strategy of a Single Carbon-Fiber-Based All-Solid-State Flexible Lithium-Ion Battery for Wearable Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7974-7980.	4.0	86
11	Carbon Dots and Their Polymeric Nanocomposites. , 2019, , 217-260.		5
12	Enhancement of the surface reactivity of zigzag boron nitride nanoribbons by chlorine gas decoration: A computational study. Journal of Physics and Chemistry of Solids, 2018, 120, 34-43.	1.9	9
13	1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2 and investigation of their photocatalytic activity. Applied Surface Science, 2018, 427, 262-272.	3.1	46
14	A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19870-19880.	4.0	40
15	Enhanced Electrochemical and Photocatalytic Performance of Core–Shell CuS@Carbon Quantum Dots@Carbon Hollow Nanospheres. ACS Applied Materials & Interfaces, 2017, 9, 2459-2468.	4.0	87
16	Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. Journal of Materials Chemistry A, 2017, 5, 1826-1859.	5 . 2	132
17	Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon, 2017, 122, 247-257.	5.4	130
18	Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties. Materials Science and Engineering C, 2015, 56, 74-83.	3.8	33

#	Article	IF	CITATIONS
19	Ultralow dielectric, high performing hyperbranched epoxy thermosets: synthesis, characterization and property evaluation. RSC Advances, 2015, 5, 35080-35088.	1.7	27
20	An in situ prepared photo-luminescent transparent biocompatible hyperbranched epoxy/carbon dot nanocomposite. RSC Advances, 2015, 5, 74692-74704.	1.7	49
21	Tough hyperbranched epoxy/neem-oil-modified OMMT thermosetting nanocomposite with an antimicrobial attribute. New Journal of Chemistry, 2015, 39, 595-603.	1.4	9
22	Tough hyperbranched epoxy/poly(amidoâ€amine) modified bentonite thermosetting nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
23	Carbon dot reduced Cu ₂ O nanohybrid/hyperbranched epoxy nanocomposite: mechanical, thermal and photocatalytic activity. RSC Advances, 2014, 4, 58453-58459.	1.7	61
24	Biodegradable Hyperbranched Epoxy from Castor Oil-Based Hyperbranched Polyester Polyol. ACS Sustainable Chemistry and Engineering, 2014, 2, 445-453.	3.2	92
25	A room temperature cured low dielectric hyperbranched epoxy adhesive with high mechanical strength. Journal of Chemical Sciences, 2014, 126, 587-595.	0.7	9
26	Novel high performance tough hyperbranched epoxy by an A ₂ +B ₃ polycondensation reaction. Journal of Materials Chemistry A, 2013, 1, 348-353.	5. 2	109
27	A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 2013, 3, 8286.	1.7	705
28	Transparent Luminescent Hyperbranched Epoxy/Carbon Oxide Dot Nanocomposites with Outstanding Toughness and Ductility. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10027-10034.	4.0	70