Marta MusioÅ,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5160703/publications.pdf Version: 2024-02-01

Μλατλ ΜιιειοÅ

#	Article	IF	CITATIONS
1	(Bio)degradable biochar composites – Studies on degradation and electrostatic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115515.	1.7	16
2	Poly(<scp>l</scp> -Lactide) Liquid Crystals with Tailor-Made Properties Toward a Specific Nematic Mesophase Texture. ACS Sustainable Chemistry and Engineering, 2022, 10, 3323-3334.	3.2	4
3	Electrospun Nisin-Loaded Poly(ε-caprolactone)-Based Active Food Packaging. Materials, 2022, 15, 4540.	1.3	3
4	Nematic-to-Isotropic Phase Transition in Poly(L-Lactide) with Addition of Cyclodextrin during Abiotic Degradation Study. International Journal of Molecular Sciences, 2022, 23, 7693.	1.8	1
5	Effects of ionic liquid doping on gas transport properties of thermally rearranged poly(hydroxyimide)s. Separation and Purification Technology, 2021, 254, 117664.	3.9	4
6	Bioresorbable electrospun mats of poly(D, L)-lactide/poly[(R, S)-3-hydroxybutyrate] blends for potential use in the treatment of difficult-to-heal skin wounds. European Polymer Journal, 2021, 147, 110334.	2.6	7
7	The Effect of Alkyl Substitution of Novel Imines on Their Supramolecular Organization, towards Photovoltaic Applications. Polymers, 2021, 13, 1043.	2.0	8
8	Influence of chemical structure on thermal, optical and electrochemical properties of conjugated azomethines. Synthetic Metals, 2021, 273, 116689.	2.1	8
9	End-of-Life Options for (Bio)degradable Polymers in the Circular Economy. Advances in Polymer Technology, 2021, 2021, 1-18.	0.8	24
10	Sustainable Future Alternative: (Bio)degradable Polymers for the Environment. , 2020, , 274-284.		8
11	(Bio)Degradable Polymeric Materials for Sustainable Future—Part 3: Degradation Studies of the PHA/Wood Flour-Based Composites and Preliminary Tests of Antimicrobial Activity. Materials, 2020, 13, 2200.	1.3	17
12	Three-Dimensional Printed PLA and PLA/PHA Dumbbell-Shaped Specimens: Material Defects and Their Impact on Degradation Behavior. Materials, 2020, 13, 2005.	1.3	12
13	Mass Spectrometry Reveals Molecular Structure of Polyhydroxyalkanoates Attained by Bioconversion of Oxidized Polypropylene Waste Fragments. Polymers, 2019, 11, 1580.	2.0	31
14	The Impact of Synthesis Method on the Properties and CO2 Sorption Capacity of UiO-66(Ce). Catalysts, 2019, 9, 309.	1.6	35
15	3D-Printed Polyester-Based Prototypes for Cosmetic Applications—Future Directions at the Forensic Engineering of Advanced Polymeric Materials. Materials, 2019, 12, 994.	1.3	14
16	(Bio)degradable Polymeric Materials for Sustainable Future—Part 2: Degradation Studies of P(3HB-co-4HB)/Cork Composites in Different Environments. Polymers, 2019, 11, 547.	2.0	10
17	Polymers Tailored for Controlled (Bio)degradation Through End-group and In-chain Functionalization. Current Organic Synthesis, 2019, 16, 950-952.	0.7	2
18	Compostable Polymeric Ecomaterials: Environment-Friendly Waste Management Alternative to		1

Landfills. , 2019, , 2733-2764.

Marta MusioÅ,

#	Article	IF	CITATIONS
19	Multifunctional Composite Ecomaterials and Their Impact on Sustainability. , 2019, , 3193-3222.		О
20	The impact of shape memory test on degradation profile of a bioresorbable polymer. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 39-45.	1.5	5
21	A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polymer Degradation and Stability, 2018, 152, 191-207.	2.7	81
22	(Bio)degradable polymeric materials for a sustainable future – part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life. Waste Management, 2018, 77, 447-454.	3.7	46
23	Multifunctional Composite Ecomaterials and Their Impact on Sustainability. , 2018, , 1-31.		Ο
24	Synthesis, characterization, and gas permeation properties of thermally rearranged poly(hydroxyimide)s filled with mesoporous MCM-41 silica. Polymer, 2018, 158, 32-45.	1.8	16
25	The Microbial Production of Polyhydroxyalkanoates from Waste Polystyrene Fragments Attained Using Oxidative Degradation. Polymers, 2018, 10, 957.	2.0	64
26	Present and Future of Biodegradable Polymers for Food Packaging Applications. , 2018, , 431-467.		49
27	Prediction studies of environment-friendly biodegradable polymeric packaging based on PLA. Influence of specimens' thickness on the hydrolytic degradation profile. Waste Management, 2018, 78, 938-947.	3.7	14
28	Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study. Polymer Degradation and Stability, 2018, 156, 100-110.	2.7	37
29	Multi-layered graphenic structures as the effect of chemical modification of thermally treated anthracite. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 405-416.	1.0	7
30	Crystallinity as a tunable switch of poly(L-lactide) shape memory effects. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 144-151.	1.5	26
31	Forensic engineering of advanced polymeric materials Part IV: Case study of oxo-biodegradable polyethylene commercial bag – Aging in biotic and abiotic environment. Waste Management, 2017, 64, 20-27.	3.7	28
32	Compostable Polymeric Ecomaterials: Environment-Friendly Waste Management Alternative to Landfills. , 2017, , 1-31.		2
33	Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers, 2017, 9, 257.	2.0	21
34	Polymers Tailored for Controlled (Bio)degradation Through End-Group and In-Chain Functionalization. Current Organic Synthesis, 2017, 14, 768-777.	0.7	7
35	Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 2016, 52, 69-76.	3.7	64
36	Valorization of polyethylene degradation products by blending with PHB biopolyester. Journal of Chemical Technology and Biotechnology, 2016, 91, 1623-1628.	1.6	7

Marta MusioÅ,

#	Article	IF	CITATIONS
37	(Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions. European Food Research and Technology, 2016, 242, 815-823.	1.6	37
38	Forensic Engineering of Advanced Polymeric Materials. Part 1 – Degradation Studies of Polylactide Blends with Atactic Poly[(R,S)-3-hydroxybutyrate] in Paraffin. Chemical and Biochemical Engineering Quarterly, 2015, 29, 247-259.	0.5	29
39	Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. International Biodeterioration and Biodegradation, 2015, 101, 32-41.	1.9	55
40	(Bio)degradation studies of degradable polymer composites with jute in different environments. Fibers and Polymers, 2015, 16, 1362-1369.	1.1	18
41	Further evidence of polylactide degradation in paraffin and in selected protic media. A thermal analysis of eroded polylactide films. Polymer Degradation and Stability, 2013, 98, 1450-1457.	2.7	26
42	A preliminary study of the degradation of selected commercial packaging materials in compost and aqueous environments. Polish Journal of Chemical Technology, 2011, 13, 55-57.	0.3	22
43	Environmental Degradation of Blends of Atactic Poly[(R,S)-3-hydroxybutyrate] with Natural PHBV in Baltic Sea Water and Compost with Activated Sludge. Journal of Polymers and the Environment, 2008, 16, 183-191.	2.4	65
44	Degradation Study of Polymers from Renewable Resources and their Compositions in Industrial Composting Pile. Macromolecular Symposia, 2008, 272, 132-135.	0.4	21
45	Degradation of selected synthetic polyesters in natural conditions. Polimery, 2006, 51, 539-546.	0.4	13