Victoria J Haunton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/516052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebral Hemodynamics in Mild Cognitive Impairment: A Systematic Review. Journal of Alzheimer's Disease, 2017, 59, 369-385.	1.2	90
2	Cerebral autoregulation in cardiopulmonary bypass surgery: a systematic review. Interactive Cardiovascular and Thoracic Surgery, 2018, 26, 494-503.	0.5	47
3	The Leicester cerebral haemodynamics database: normative values and the influence of age and sex. Physiological Measurement, 2016, 37, 1485-1498.	1.2	44
4	Assessment of cerebral autoregulation in stroke: A systematic review and meta-analysis of studies at rest. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2105-2116.	2.4	39
5	A systematic review of cerebral hemodynamic responses to neural activation following stroke. Journal of Neurology, 2013, 260, 2715-2721.	1.8	28
6	Vascular and haemodynamic issues of brain ageing. Pflugers Archiv European Journal of Physiology, 2021, 473, 735-751.	1.3	28
7	Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R730-R740.	0.9	24
8	Dynamic cerebral autoregulation measurement using rapid changes in head positioning: experiences in acute ischemic stroke and healthy control populations. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H673-H683.	1.5	16
9	Is cerebral vasomotor reactivity impaired in Parkinson disease?. Clinical Autonomic Research, 2017, 27, 107-111.	1.4	15
10	The assessment of neurovascular coupling with the Addenbrooke's Cognitive Examination: a functional transcranial Doppler ultrasonographic study. Journal of Neurophysiology, 2018, 119, 1084-1094.	0.9	15
11	How many squat–stand manoeuvres to assess dynamic cerebral autoregulation?. European Journal of Applied Physiology, 2018, 118, 2377-2384.	1.2	15
12	Is dynamic cerebral autoregulation measurement using transcranial Doppler ultrasound reproducible in the presence of high concentration oxygen and carbon dioxide?. Physiological Measurement, 2016, 37, 673-682.	1.2	14
13	Does depth of squatâ€stand maneuver affect estimates of dynamic cerebral autoregulation?. Physiological Reports, 2020, 8, e14549.	0.7	14
14	The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review. Autonomic Neuroscience: Basic and Clinical, 2022, 240, 102985.	1.4	14
15	Random squat/stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation?. Journal of Applied Physiology, 2017, 123, 558-566.	1.2	13
16	Neurovascular coupling response to cognitive examination in healthy controls: a multivariate analysis. Physiological Reports, 2018, 6, e13803.	0.7	11
17	Determining differences between critical closing pressure and resistance-area product: responses of the healthy young and old to hypocapnia. Pflugers Archiv European Journal of Physiology, 2019, 471, 1117-1126.	1.3	11
18	Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2456-2469.	2.4	11

VICTORIA J HAUNTON

#	Article	IF	CITATIONS
19	Using complexity–entropy planes to detect Parkinson's disease from short segments of haemodynamic signals. Physiological Measurement, 2021, 42, 084002.	1.2	11
20	Does gradual change in head positioning affect cerebrovascular physiology?. Physiological Reports, 2018, 6, e13603.	0.7	10
21	The Assessment of Cerebrovascular Response to a Language Task from the Addenbrooke's Cognitive Examination in Cognitive Impairment: A Feasibility Functional Transcranial Doppler Ultrasonography Study. Journal of Alzheimer's Disease Reports, 2018, 2, 153-164.	1.2	10
22	Alternative representation of neural activation in multivariate models of neurovascular coupling in humans. Journal of Neurophysiology, 2019, 122, 833-843.	0.9	9
23	The Effects of Healthy Ageing on Cerebral Blood Flow Responses to Cognitive Testing. Current Aging Science, 2019, 11, 226-235.	0.4	8
24	Determinants of cerebral blood flow velocity change during squat-stand maneuvers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R452-R466.	0.9	8
25	Neuroimaging Outcomes in Studies of Cognitive Training in Mild Cognitive Impairment and Early Alzheimer's Disease: A Systematic Review. Current Alzheimer Research, 2020, 17, 472-486.	0.7	8
26	Increased blood pressure variability following acute stroke is associated with poor long-term outcomes. Blood Pressure Monitoring, 2019, 24, 67-73.	0.4	7
27	An objective method to identify non-responders in neurovascular coupling testing. Journal of Neuroscience Methods, 2020, 341, 108779.	1.3	7
28	Cerebral hemodynamics in stroke thrombolysis (CHiST) study. PLoS ONE, 2020, 15, e0238620.	1.1	6
29	Driving in Parkinson's disease: a retrospective study of driving and mobility assessments. Age and Ageing, 2020, 49, 1097-1101.	0.7	6
30	Can we use short recordings for assessment of dynamic cerebral autoregulation? A sensitivity analysis study in acute ischaemic stroke and healthy subjects. Physiological Measurement, 2019, 40, 085002.	1.2	5
31	Effects of brain training on brain blood flow (The Cognition and Flow Study—CogFlowS): protocol for a feasibility randomised controlled trial of cognitive training in dementia. BMJ Open, 2019, 9, e027817.	0.8	5
32	Chasing the evidence: the influence of data segmentation on estimates of dynamic cerebral autoregulation. Physiological Measurement, 2020, 41, 035006.	1.2	4
33	The Cognition and Flow Study: A Feasibility Randomized Controlled Trial of the Effects of Cognitive Training on Cerebral Blood Flow. Journal of Alzheimer's Disease, 2021, 80, 1567-1581.	1.2	4
34	Cerebral blood flow response rate to task-activation using a novel method can discriminate cognitive impairment from healthy aging. Physiological Measurement, 2021, 42, 074006.	1.2	4
35	Extremes of cerebral blood flow during hypercapnic squatâ€stand maneuvers. Physiological Reports, 2021, 9, e15021.	0.7	4
36	Cerebrovascular responses to somatomotor stimulation in Parkinson's disease: A multivariate analysis. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1547-1558.	2.4	4

VICTORIA J HAUNTON

#	Article	IF	CITATIONS
37	Qualitative Analysis of the Cognition and Flow (CoGFlowS) Study: An Individualized Approach to Cognitive Training for Dementia Is Needed. Journal of Alzheimer's Disease, 2021, 83, 209-225.	1.2	3
38	The Interaction of Dynamic Cerebral Autoregulation and Neurovascular Coupling in Cognitive Impairment. Current Alzheimer Research, 2021, 18, 1067-1076.	0.7	3
39	Movement disorders: a themed collection. Age and Ageing, 2020, 49, 12-15.	0.7	2
40	Age-related differences in cerebrovascular responses to cognitive stimulation using a novel method. Aging, Neuropsychology, and Cognition, 2022, 29, 929-942.	0.7	2
41	Dynamics of the cerebral autoregulatory response to paced hyperventilation assessed using subcomponent and time-varying analyses. Journal of Applied Physiology, 2022, 133, 311-319.	1.2	2
42	Can we assess dynamic cerebral autoregulation in stroke patients with high rates of cardiac ectopicity?. Medical and Biological Engineering and Computing, 2019, 57, 2731-2739.	1.6	1
43	Driving and Parkinson's Disease: A Survey of the Patient's Perspective. Journal of Parkinson's Disease, 2022, 12, 465-471.	1.5	1
44	Modern medical management of TIA and stroke. , 2016, , 388-398.		0
45	The Cognition and Flow Study (CogFlowS): A Mixed Method Evaluation of a Randomized Feasibility Trial of Cognitive Training in Dementia. Journal of Alzheimer's Disease, 2022, 87, 1013-1031.	1.2	0