Melissa L Perreault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5160358/publications.pdf

Version: 2024-02-01

44 papers 2,061 citations

331538 21 h-index 254106 43 g-index

47 all docs

47 docs citations

47 times ranked

2125 citing authors

#	Article	IF	CITATIONS
1	Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3513-3518.	3.3	335
2	Psychosis pathways converge via D2High dopamine receptors. Synapse, 2006, 60, 319-346.	0.6	298
3	Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21377-21382.	3.3	232
4	The Dopamine D1-D2 Receptor Heteromer Localizes in Dynorphin/Enkephalin Neurons. Journal of Biological Chemistry, 2010, 285, 36625-36634.	1.6	162
5	Heteromeric Dopamine Receptor Signaling Complexes: Emerging Neurobiology and Disease Relevance. Neuropsychopharmacology, 2014, 39, 156-168.	2.8	133
6	The Dopamine D1–D2 Receptor Heteromer in Striatal Medium Spiny Neurons: Evidence for a Third Distinct Neuronal Pathway in Basal Ganglia. Frontiers in Neuroanatomy, 2011, 5, 31.	0.9	109
7	Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and ΔFosB. Frontiers in Pharmacology, 2017, 8, 924.	1.6	55
8	Dopamine D1–D2 Receptor Heteromer in Dual Phenotype GABA/Glutamate-Coexpressing Striatal Medium Spiny Neurons: Regulation of BDNF, GAD67 and VGLUT1/2. PLoS ONE, 2012, 7, e33348.	1.1	54
9	A physiological role for the dopamine D5 receptor as a regulator of BDNF and Akt signalling in rodent prefrontal cortex. International Journal of Neuropsychopharmacology, 2013, 16, 477-483.	1.0	54
10	Sex difference in dopamine D1-D2 receptor complex expression and signaling affects depression- and anxiety-like behaviors. Biology of Sex Differences, 2020, $11,8$.	1.8	49
11	A peptide targeting an interaction interface disrupts the dopamine D1â \in D2 receptor heteromer to block signaling and function <i<math>\timesin vitro and <i<math>\timesin vivo: effective selective antagonism. FASEB Journal, 2014, 28, 4806-4820.</i<math></i<math>	0.2	45
12	Rapid anti-depressant and anxiolytic actions following dopamine D1–D2 receptor heteromer inactivation. European Neuropsychopharmacology, 2015, 25, 2437-2448.	0.3	40
13	Disruption of a dopamine receptor complex amplifies the actions of cocaine. European Neuropsychopharmacology, 2016, 26, 1366-1377.	0.3	36
14	Sex Differences in Dopamine Receptors and Relevance to Neuropsychiatric Disorders. Brain Sciences, 2021, 11, 1199.	1.1	35
15	Development and temporal organization of compulsive checking induced by repeated injections of the dopamine agonist quinpirole in an animal model of obsessive-compulsive disorder. Behavioural Brain Research, 2006, 169, 303-311.	1.2	31
16	Kappa-opioid receptor stimulation quickens pathogenesis of compulsive checking in the quinpirole sensitization model of obsessive-compulsive disorder (OCD) Behavioral Neuroscience, 2007, 121, 976-991.	0.6	29
17	Dopamine Receptor Homooligomers and Heterooligomers in Schizophrenia. CNS Neuroscience and Therapeutics, 2011, 17, 52-57.	1.9	29
18	Hormonal regulation of circuit function: sex, systems and depression. Biology of Sex Differences, 2019, 10, 12.	1.8	29

#	Article	IF	CITATIONS
19	Kappa-Opioid Agonist U69593 Potentiates Locomotor Sensitization to the D2/D3 Agonist Quinpirole: Pre- and Postsynaptic Mechanisms. Neuropsychopharmacology, 2006, 31, 1967-1981.	2.8	27
20	Regulation of c-fos expression by the dopamine D1-D2 receptor heteromer. Neuroscience, 2015, 285, 194-203.	1.1	23
21	The dopamine D1–D2 receptor heteromer exerts a tonic inhibitory effect on the expression of amphetamine-induced locomotor sensitization. Pharmacology Biochemistry and Behavior, 2015, 128, 33-40.	1.3	22
22	Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats. Psychopharmacology, 2007, 194, 485-496.	1.5	20
23	Disparate Effects of Lithium and a GSK-3 Inhibitor on Neuronal Oscillatory Activity in Prefrontal Cortex and Hippocampus. Frontiers in Aging Neuroscience, 2018, 9, 434.	1.7	20
24	Reduced striatal dopamine D1–D2 receptor heteromer expression and behavioural subsensitivity in juvenile rats. Neuroscience, 2012, 225, 130-139.	1.1	19
25	Dopamine D ₁ -D ₂ Receptor Heteromer Regulates Signaling Cascades Involved in Addiction: Potential Relevance to Adolescent Drug Susceptibility. Developmental Neuroscience, 2014, 36, 287-296.	1.0	19
26	Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plasticity, 2018, 4, 151-167.	1.9	19
27	Sex differences in innate and adaptive neural oscillatory patterns link resilience and susceptibility to chronic stress in rats. Journal of Psychiatry and Neuroscience, 2021, 46, E258-E270.	1.4	16
28	Transient Dose-dependent Effects of Ketamine on Neural Oscillatory Activity in Wistar-Kyoto Rats. Neuroscience, 2020, 441, 161-175.	1.1	14
29	Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction?. Pharmacological Research, 2020, 157, 104819.	3.1	13
30	Sex differences in neuronal systems function and behaviour: beyond a single diagnosis in autism spectrum disorders. Translational Psychiatry, 2021, 11, 625.	2.4	11
31	GSK- $3\hat{l}^2$ Disrupts Neuronal Oscillatory Function to Inhibit Learning and Memory in Male Rats. Cellular and Molecular Neurobiology, 2022, 42, 1341-1353.	1.7	10
32	Enhanced Brain-Derived Neurotrophic Factor Signaling in the Nucleus Accumbens of Juvenile Rats. Developmental Neuroscience, 2013, 35, 384-395.	1.0	9
33	Asenapine maleate normalizes low frequency oscillatory deficits in a neurodevelopmental model of schizophrenia. Neuroscience Letters, 2019, 711, 134404.	1.0	9
34	Extended Attenuation of Corticostriatal Power and Coherence after Acute Exposure to Vapourized î"9-Tetrahydrocannabinol in Rats. Canadian Journal of Addiction, 2019, 10, 60-66.	0.2	9
35	Cannabis Vapor Exposure Alters Neural Circuit Oscillatory Activity in a Neurodevelopmental Model of Schizophrenia: Exploring the Differential Impact of Cannabis Constituents. Schizophrenia Bulletin Open, 2022, 3, sgab052.	0.9	8
36	The atypical dopamine receptor agonist <scp>SKF</scp> 83959 enhances hippocampal and prefrontal cortical neuronal network activity in a rat model of cognitive dysfunction. European Journal of Neuroscience, 2017, 46, 2015-2025.	1.2	6

3

#	Article	IF	CITATIONS
37	Acute mitragynine administration suppresses cortical oscillatory power and systems theta coherence in rats. Journal of Psychopharmacology, 2020, 34, 759-770.	2.0	6
38	Thermoregulation of transgenic growth hormone mice. Canadian Journal of Zoology, 2004, 82, 934-949.	0.4	5
39	The Antidepressant-Like and Analgesic Effects of Kratom Alkaloids are accompanied by Changes in Low Frequency Oscillations but not ΔFosB Accumulation. Frontiers in Pharmacology, 2021, 12, 696461.	1.6	5
40	Glycogen Synthase Kinase-3: A Focal Point for Advancing Pathogenic Inflammation in Depression. Cells, 2021, 10, 2270.	1.8	5
41	An Indigenous Lens on Priorities for the Canadian Brain Research Strategy. Canadian Journal of Neurological Sciences, 2023, 50, 96-98.	0.3	4
42	Transgenic growth hormone mice exposed to lifetime constant illumination: gender-specific effects. Canadian Journal of Zoology, 2004, 82, 950-965.	0.4	2
43	Sex-Specific Cannabidiol- and Iloperidone-Induced Neuronal Activity Changes in an In Vitro MAM Model System of Schizophrenia. International Journal of Molecular Sciences, 2021, 22, 5511.	1.8	1
44	Regulation of Dopamine Receptor Trafficking and Responsiveness. , 2010, , 193-217.		1