Jesus Garoz-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5160157/publications.pdf Version: 2024-02-01

IFSUS CAROZ-RUIZ

#	Article	IF	CITATIONS
1	Spectroelectrochemical Sensing: Current Trends and Challenges. Electroanalysis, 2019, 31, 1254-1278.	2.9	52
2	Carbon Nanotubes Press-Transferred on PMMA Substrates as Exclusive Transducers for Electrochemical Microfluidic Sensing. Analytical Chemistry, 2012, 84, 10838-10844.	6.5	50
3	Development of a Novel Bidimensional Spectroelectrochemistry Cell Using Transfer Single-Walled Carbon Nanotubes Films as Optically Transparent Electrodes. Analytical Chemistry, 2015, 87, 6233-6239.	6.5	33
4	Simultaneous UV–Visible Absorption and Raman Spectroelectrochemistry. Analytical Chemistry, 2016, 88, 8210-8217.	6.5	33
5	Direct Determination of Ascorbic Acid in a Grapefruit: Paving the Way for In Vivo Spectroelectrochemistry. Analytical Chemistry, 2017, 89, 1815-1822.	6.5	25
6	Press-transfer optically transparent electrodes fabricated from commercial single-walled carbon nanotubes. Electrochemistry Communications, 2012, 25, 1-4.	4.7	23
7	Electrodeposition and Screening of Photoelectrochemical Activity in Conjugated Polymers Using Scanning Electrochemical Cell Microscopy. Langmuir, 2015, 31, 12814-12822.	3.5	21
8	Application of spectroelectroanalysis for the quantitative determination of mixtures of compounds with highly overlapping signals. Talanta, 2019, 195, 815-821.	5.5	19
9	Derivative UV/Vis spectroelectrochemistry in a thin-layer regime: deconvolution and simultaneous quantification of ascorbic acid, dopamine and uric acid. Analytical and Bioanalytical Chemistry, 2020, 412, 6329-6339.	3.7	18
10	Optical fiber spectroelectrochemical device for detection of catechol at press-transferred single-walled carbon nanotubes electrodes. Analytical and Bioanalytical Chemistry, 2013, 405, 3593-3602.	3.7	16
11	Simplifying the assessment of parameters of electron-transfer reactions by using easy-to-use thin-layer spectroelectrochemistry devices. Electrochemistry Communications, 2018, 86, 12-16.	4.7	13
12	Optically transparent electrodes for spectroelectrochemistry fabricated with graphene nanoplatelets and single-walled carbon nanotubes. RSC Advances, 2016, 6, 31431-31439.	3.6	12
13	Spectroelectrochemistry at free-standing carbon nanotubes electrodes. Electrochimica Acta, 2016, 217, 262-268.	5.2	10
14	Spectroelectrochemistry of Quantum Dots. Israel Journal of Chemistry, 2019, 59, 679-694.	2.3	9
15	Simultaneous study of different regions of an electrode surface with a novel spectroelectrochemistry platform. Electrochemistry Communications, 2018, 90, 73-77.	4.7	7
16	A Flexible Platform of Electrochemically Functionalized Carbon Nanotubes for NADH Sensors. Sensors, 2019, 19, 518.	3.8	7
17	Spectroelectrochemical Determination of Isoprenaline in a Pharmaceutical Sample. Sensors, 2020, 20, 5179.	3.8	5