Jun-feng Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5160107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defectâ€Rich MoS ₂ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2013, 25, 5807-5813.	11.1	2,705
2	Controllable Disorder Engineering in Oxygen-Incorporated MoS ₂ Ultrathin Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2013, 135, 17881-17888.	6.6	2,107
3	Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. Journal of the American Chemical Society, 2013, 135, 10411-10417.	6.6	1,091
4	Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation. Journal of the American Chemical Society, 2015, 137, 11376-11382.	6.6	891
5	Single‣ayered Graphitic ₃ N ₄ Quantum Dots for Twoâ€₽hoton Fluorescence Imaging of Cellular Nucleus. Advanced Materials, 2014, 26, 4438-4443.	11.1	501
6	Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chemical Science, 2014, 5, 4615-4620.	3.7	455
7	Enhanced Photoexcited Carrier Separation in Oxygenâ€Đoped ZnIn ₂ S ₄ Nanosheets for Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 6716-6720.	7.2	454
8	Enhanced Singlet Oxygen Generation in Oxidized Graphitic Carbon Nitride for Organic Synthesis. Advanced Materials, 2016, 28, 6940-6945.	11.1	397
9	Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges. Chemistry - A European Journal, 2016, 22, 3588-3598.	1.7	305
10	Photoelectrodes Based upon Mo:BiVO ₄ Inverse Opals for Photoelectrochemical Water Splitting. ACS Nano, 2014, 8, 7088-7098.	7.3	289
11	Enhanced Superoxide Generation on Defective Surfaces for Selective Photooxidation. Journal of the American Chemical Society, 2019, 141, 3797-3801.	6.6	285
12	Intralayered Ostwald Ripening to Ultrathin Nanomesh Catalyst with Robust Oxygenâ€Evolving Performance. Advanced Materials, 2017, 29, 1604765.	11.1	283
13	Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2013, 2, 65-74.	8.2	271
14	Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 2018, 47, 512-518.	8.2	243
15	High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Scientific Reports, 2013, 3, 1936.	1.6	232
16	Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 16121-16129.	5.2	193
17	Structural distortion in graphitic-C ₃ N ₄ realizing an efficient photoreactivity. Nanoscale, 2015, 7, 5152-5156.	2.8	178
18	Halfâ€Metallicity in Single‣ayered Manganese Dioxide Nanosheets by Defect Engineering. Angewandte Chemie - International Edition. 2015. 54. 1195-1199.	7.2	177

#	Article	IF	CITATIONS
19	Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Research, 2017, 10, 1178-1188.	5.8	177
20	Boron Phosphide Nanoparticles: A Nonmetal Catalyst for High‣electivity Electrochemical Reduction of CO ₂ to CH ₃ OH. Advanced Materials, 2019, 31, e1903499.	11.1	169
21	Copper-incorporated hierarchical wire-on-sheet α-Ni(OH) ₂ nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. Journal of Materials Chemistry A, 2019, 7, 13577-13584.	5.2	159
22	Structural Engineering of Electrocatalysts for the Hydrogen Evolution Reaction: Order or Disorder?. ChemCatChem, 2015, 7, 2568-2580.	1.8	144
23	Highly Active Fe Sites in Ultrathin Pyrrhotite Fe ₇ S ₈ Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Central Science, 2017, 3, 1221-1227.	5.3	136
24	Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution. Advanced Materials, 2017, 29, 1701687.	11.1	127
25	Promotion of Overall Water Splitting Activity Over a Wide pH Range by Interfacial Electrical Effects of Metallic NiCoâ€nitrides Nanoparticle/NiCo ₂ O ₄ Nanoflake/graphite Fibers. Advanced Science, 2019, 6, 1801829.	5.6	122
26	A ternary cobalt–molybdenum–vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Communications, 2019, 55, 3521-3524.	2.2	121
27	Ironâ€Incorporated αâ€Ni(OH) ₂ Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation. Chemistry - A European Journal, 2018, 24, 18408-18412.	1.7	114
28	NIR light induced H ₂ evolution by a metal-free photocatalyst. Chemical Communications, 2015, 51, 10899-10902.	2.2	112
29	IR-Driven Photocatalytic Water Splitting with WO ₂ –Na _{<i>x</i>} WO ₃ Hybrid Conductor Material. Nano Letters, 2015, 15, 7199-7203.	4.5	109
30	Constructing Hierarchical Wire-on-Sheet Nanoarrays in Phase-Regulated Cerium-Doped Nickel Hydroxide for Promoted Urea Electro-oxidation. , 2019, 1, 103-110.		100
31	Metallic Intermediate Phase Inducing Morphological Transformation in Thermal Nitridation: Ni ₃ FeN-Based Three-Dimensional Hierarchical Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 3699-3706.	4.0	96
32	Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation. Nano Energy, 2018, 53, 74-82.	8.2	94
33	Defect engineering in two-dimensional electrocatalysts for hydrogen evolution. Nanoscale, 2020, 12, 4283-4294.	2.8	92
34	All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite. Journal of Materials Chemistry A, 2014, 2, 10876.	5.2	82
35	Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation. Journal of Materials Chemistry A, 2019, 7, 24437-24444.	5.2	80
36	The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 2964-2970.	3.0	76

#	Article	IF	CITATIONS
37	Recent advances in the pre-oxidation process in electrocatalytic urea oxidation reactions. Chemical Communications, 2022, 58, 2430-2442.	2.2	71
38	Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior. Physical Chemistry Chemical Physics, 2012, 14, 4810.	1.3	65
39	Zirconium trisulfide ultrathin nanosheets as efficient catalysts for water oxidation in both alkaline and neutral solutions. Inorganic Chemistry Frontiers, 2014, 1, 751-756.	3.0	64
40	ZnCo2O4 ultrathin nanosheets towards the high performance of flexible supercapacitors and bifunctional electrocatalysis. Journal of Alloys and Compounds, 2018, 764, 565-573.	2.8	63
41	Siloxene nanosheets: a metal-free semiconductor for water splitting. Journal of Materials Chemistry A, 2016, 4, 15841-15844.	5.2	61
42	Morphology and electronic structure modulation induced by fluorine doping in nickel-based heterostructures for robust bifunctional electrocatalysis. Nanoscale, 2018, 10, 20384-20392.	2.8	61
43	Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis. Electrochimica Acta, 2020, 338, 135883.	2.6	61
44	A self-sacrificial templated route to fabricate CuFe Prussian blue analogue/Cu(OH)2 nanoarray as an efficient pre-catalyst for ultrastable bifunctional electro-oxidation. Chemical Engineering Journal, 2021, 422, 130139.	6.6	58
45	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
46	Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2020, 56, 11910-11930.	2.2	56
47	Crystalline Cobalt/Amorphous LaCoO <i>_x</i> Hybrid Nanoparticles Embedded in Porous Nitrogen-Doped Carbon as Efficient Electrocatalysts for Hydrazine-Assisted Hydrogen Production. ACS Applied Materials & Interfaces, 2020, 12, 24701-24709.	4.0	56
48	Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 1160-1166.	3.0	55
49	Dual Effect in Fluorineâ€Ðoped Hematite Nanocrystals for Efficient Water Oxidation. ChemSusChem, 2017, 10, 4465-4471.	3.6	51
50	Controllable green synthesis of crassula peforata-like TiO2 with high photocatalytic activity based on deep eutectic solvent (DES). Chemical Engineering Journal, 2018, 348, 811-819.	6.6	43
51	Enhanced Photoexcited Carrier Separation in Oxygenâ€Đoped ZnIn ₂ S ₄ Nanosheets for Hydrogen Evolution. Angewandte Chemie, 2016, 128, 6828-6832.	1.6	42
52	Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene. Chemical Engineering Journal, 2021, 426, 131317.	6.6	40
53	Platinum Nanocrystals Decorated on Defect-Rich MoS ₂ Nanosheets for pH-Universal Hydrogen Evolution Reaction. Crystal Growth and Design, 2019, 19, 60-65.	1.4	39
54	Modulation of crystal water in cobalt phosphate for promoted water oxidation. Chemical Communications, 2020, 56, 4575-4578.	2.2	37

#	Article	IF	CITATIONS
55	Lanthanum-doped α-Ni(OH)2 1D-2D-3D hierarchical nanostructures for robust bifunctional electro-oxidation. Particuology, 2021, 57, 104-111.	2.0	32
56	Hierarchical porous activated biochar derived from marine macroalgae wastes (<i>Enteromorpha) Tj ETQq0 0 29237-29247.</i>	0 rgBT /Ove 1.7	rlock 10 Tf 50 30
57	Preferential Microstructure Design of Twoâ€Dimensional Electrocatalysts for Boosted Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 4662-4670.	1.8	29
58	Two-Dimensional Mn-Co LDH/Graphene Composite towards High-Performance Water Splitting. Catalysts, 2018, 8, 350.	1.6	27
59	Reduction-induced surface reconstruction to fabricate cobalt hydroxide/molybdenum oxide hybrid nanosheets for promoted oxygen evolution reaction. Chemical Engineering Journal, 2021, 413, 127540.	6.6	25
60	High-performance alkaline hydrogen evolution electrocatalyzed by a Ni ₃ N–CeO ₂ nanohybrid. Inorganic Chemistry Frontiers, 2018, 5, 3042-3045.	3.0	24
61	The core ubiquitin system of mandarin fish, Siniperca chuatsi, can be utilized by infectious spleen and kidney necrosis virus. Fish and Shellfish Immunology, 2017, 70, 293-301.	1.6	23
62	Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors. Science China Chemistry, 2018, 61, 797-805.	4.2	23
63	A molten-salt protected pyrolysis approach for fabricating a ternary nickel–cobalt–iron oxide nanomesh catalyst with promoted oxygen-evolving performance. Chemical Communications, 2020, 56, 4579-4582.	2.2	23
64	Acceleration of the pre-oxidation process by tuning the degree of sulfurization for promoted oxygen evolution reaction. Chemical Communications, 2022, 58, 6360-6363.	2.2	23
65	Grain boundary engineering in atomically-thin nanosheets achieving bright white light emission. Chemical Science, 2014, 5, 1328.	3.7	22
66	Promoted water splitting by efficient electron transfer between Au nanoparticles and hematite nanoplates: a theoretical and experimental study. Physical Chemistry Chemical Physics, 2019, 21, 1478-1483.	1.3	22
67	Fluorometric determination of the activity of alkaline phosphatase and its inhibitors based on ascorbic acid-induced aggregation of carbon dots. Mikrochimica Acta, 2019, 186, 202.	2.5	22
68	Novel (Ni, Fe)S2/(Ni, Fe)3S4 solid solution hybrid: an efficient electrocatalyst with robust oxygen-evolving performance. Science China Chemistry, 2020, 63, 1030-1039.	4.2	22
69	Ni x Co 3―x O 4 Nanoneedle Arrays Grown on Ni Foam as an Efficient Bifunctional Electrocatalyst for Full Water Splitting. Chemistry - an Asian Journal, 2019, 14, 480-485.	1.7	21
70	Lanthanum-incorporated β-Ni(OH) ₂ nanoarrays for robust urea electro-oxidation. Chemical Communications, 2021, 57, 2029-2032.	2.2	21
71	Efficient alkaline hydrogen evolution electrocatalysis enabled by an amorphous Co–Mo–B film. Dalton Transactions, 2018, 47, 7640-7643.	1.6	20
72	Facile synthesis of hierarchical porous Ni _x Co _{1â^x} SeO ₃ networks with controllable composition as a new and efficient water oxidation catalyst. Nanoscale, 2019, 11, 3268-3274.	2.8	19

#	Article	IF	CITATIONS
73	Molten-Salt-Protected Pyrolytic Approach for Fabricating Borate-Modified Cobalt–Iron Spinel Oxide with Robust Oxygen-Evolving Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 14596-14604.	3.2	19
74	High Performance Supercapacitors from Hierarchical Porous Carbon Aerogels Based on Sliced Bread. Chinese Journal of Chemistry, 2017, 35, 699-706.	2.6	18
75	Modified bluing treatment to produce nickel–cobalt–iron spinel oxide with promoted oxygen-evolving performance. Chemical Communications, 2019, 55, 9841-9844.	2.2	18
76	Electrochemical reduction of nitrate on silver surface and an <i>in situ</i> Raman spectroscopy study. Inorganic Chemistry Frontiers, 2022, 9, 2734-2740.	3.0	18
77	Molten-Salt-Protected Pyrolysis for Fabricating Perovskite Nanocrystals with Promoted Water Oxidation Behavior. ACS Sustainable Chemistry and Engineering, 2020, 8, 16711-16719.	3.2	17
78	Synthesis of Semiconducting 2H-Phase WTe ₂ Nanosheets with Large Positive Magnetoresistance. Inorganic Chemistry, 2020, 59, 11935-11939.	1.9	17
79	Controllable fabrication of TiO ₂ anatase/rutile phase junctions by a designer solvent for promoted photocatalytic performance. Chemical Communications, 2020, 56, 11827-11830.	2.2	16
80	An iron incorporation-induced nickel hydroxide multiphase with a 2D/3D hierarchical sheet-on-sheet structure for electrocatalytic water oxidation. Chemical Communications, 2019, 55, 10138-10141.	2.2	15
81	Spectrophotometric determination of the activity of alkaline phosphatase and detection of its inhibitors by exploiting the pyrophosphate-accelerated oxidase-like activity of nanoceria. Mikrochimica Acta, 2019, 186, 320.	2.5	15
82	Rapid and Scalable Synthesis of Prussian Blue Analogue Nanocubes for Electrocatalytic Water Oxidation ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2347-2353.	2.6	15
83	"Pit-dot―ultrathin nanosheets of hydrated copper pyrophosphate as efficient pre-catalysts for robust water oxidation. Chemical Communications, 2021, 57, 11517-11520.	2.2	15
84	Cerium-induced lattice disordering in Co-based nanocatalysts promoting the hydrazine electro-oxidation behavior. Chemical Communications, 2022, 58, 6845-6848.	2.2	15
85	Superassembly of NiCoO _x solid solution hybrids with a 2D/3D porous polyhedron-on-sheet structure for multi-functional electrocatalytic oxidation. Journal of Materials Chemistry A, 2021, 9, 8576-8585.	5.2	14
86	In-plane β-Co(OH) ₂ /Co ₃ O ₄ hybrid nanosheets for flexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nanoscale, 2020, 12, 24251-24258.	2.8	13
87	RING finger proteins of infectious spleen and kidney necrosis virus (ISKNV) function as ubiquitin ligase enzymes. Virus Research, 2007, 123, 170-177.	1.1	11
88	A 3D porous Ni-CeO ₂ nanosheet array as a highly efficient electrocatalyst toward alkaline hydrogen evolution. Dalton Transactions, 2018, 47, 12667-12670.	1.6	11
89	CoFeOx(OH)y/CoOx(OH)y core/shell structure with amorphous interface as an advanced catalyst for electrocatalytic water splitting. Electrochimica Acta, 2020, 341, 136038.	2.6	11
90	In-situ Formation of Amorphous Co-Al-P Layer on CoAl Layered Double Hydroxide Nanoarray as Neutral Electrocatalysts for Hydrogen Evolution Reaction. Frontiers in Chemistry, 2020, 8, 552795.	1.8	7

#	Article	IF	CITATIONS
91	Synergistic enhancement of photocatalytic H2 production by Ni decorated 2D bubble-like carbon nitride. International Journal of Hydrogen Energy, 2021, 46, 23311-23321.	3.8	7
92	Core–Shell Composites Based on Multiwalled Carbon Nanotubes and Cesium Tungsten Bronze to Realize Charge Transport Balance for Photocatalytic Water Oxidation. ChemCatChem, 2016, 8, 624-630.	1.8	6
93	Cobalt, iron co-incorporated Ni(OH) ₂ multiphase for superior multifunctional electrocatalytic oxidation. Chemical Communications, 2021, 57, 13752-13755.	2.2	4