Yoon Myung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5159766/publications.pdf

Version: 2024-02-01

159585 214800 2,283 67 30 47 h-index citations g-index papers 67 67 67 4542 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oxidation Control of 5-Hydroxymethylfurfural to Polymer Building Blocks by Au Clusters and Nanoparticles on Hollow CeO ₂ Spheres. ACS Applied Nano Materials, 2022, 5, 4603-4608.	5.0	4
2	Defect-rich CeO ₂ in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material. Nanoscale, 2021, 13, 18173-18181.	5.6	1
3	Facile Formation of a LiF-Carbon Layer as an Artificial Cathodic Electrolyte Interphase through Encapsulation of a Cathode with Carbon Monofluoride. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31741-31748.	8.0	10
4	Synthesis of Sb2S3 NRs@rGO Composite as High-Performance Anode Material for Sodium-Ion Batteries. Materials, 2021, 14, 7521.	2.9	5
5	Facile and Scalable Synthesis of Porous Si/SiO _{<i>x</i>} Nanoplates from Talc for Lithium-Ion Battery Anodes. ACS Applied Energy Materials, 2020, 3, 8803-8811.	5.1	9
6	Effects of Methyl Acetate as a Co-Solvent in Carbonate-Based Electrolytes for Improved Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33844-33849.	8.0	21
7	Mechanism of Na-Ion Storage in BiOCl Anode and the Sodium-Ion Battery Formation. Journal of Physical Chemistry C, 2019, 123, 11500-11507.	3.1	18
8	Twist-Angle-Dependent Optoelectronics in a Few-Layer Transition-Metal Dichalcogenide Heterostructure. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2470-2478.	8.0	19
9	Flexible sodium-ion battery anodes using indium sulfide-based nanohybrid paper electrodes. Applied Surface Science, 2019, 467-468, 1040-1045.	6.1	22
10	Two-dimensional GeAs with a visible range band gap. Journal of Materials Chemistry A, 2018, 6, 9089-9098.	10.3	55
11	Microporous Porphyrin Networks Mimicking a Velvet Worm Surface and Their Enhanced Sensitivities toward Hydrogen Chloride and Ammonia. ACS Applied Materials & Enterfaces, 2018, 10, 6815-6819.	8.0	7
12	Thin and Small N-Doped Carbon Boxes Obtained from Microporous Organic Networks and Their Excellent Energy Storage Performance at High Current Densities in Coin Cell Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 3525-3532.	6.7	24
13	Orthorhombic NiSe ₂ Nanocrystals on Si Nanowires for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33198-33204.	8.0	49
14	Amorphous Cu2-Î'O as Passivation Layer for Ultra Long Stability of Copper Oxide Nanowires in Photoelectrochemical Environments. Journal of the Electrochemical Society, 2018, 165, H417-H424.	2.9	3
15	Intrinsic point defects and intergrowths in layered bismuth triiodide. Physical Review Materials, 2018, 2, .	2.4	12
16	Cationically Substituted Bi _{0.7} Fe _{0.3} OCI Nanosheets as Li Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14187-14196.	8.0	32
17	Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films. Journal of Materials Chemistry A, 2017, 5, 24728-24739.	10.3	41
18	Yolk–Shell Polystyrene@Microporous Organic Network: A Smart Template with Thermally Disassemblable Yolk To Engineer Hollow MoS ₂ /C Composites for High-Performance Supercapacitors. ACS Omega, 2017, 2, 7658-7665.	3.5	15

#	Article	IF	Citations
19	Configurational Entropy of Adlayers in Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 5458-5462.	6.7	4
20	Phase and stress evolution of Si swarf in the diamond-coated wire sawing of Si ingots. International Journal of Advanced Manufacturing Technology, 2017, 89, 735-742.	3.0	6
21	Standing and sitting adlayers in atomic layer deposition of ZnO. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	20
22	Indirect Phase Transformation of CuO to Cu ₂ O on a Nanowire Surface. Langmuir, 2016, 32, 4485-4493.	3.5	39
23	Doping Mechanism in Transparent, Conducting Tantalum Doped ZnO Films Deposited Using Atomic Layer Deposition. Advanced Materials Interfaces, 2016, 3, 1600496.	3.7	15
24	Star-shaped hole transport materials with indeno[1,2-b] thiophene or fluorene on a triazine core for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1186-1190.	10.3	38
25	Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots. International Journal of Advanced Manufacturing Technology, 2016, 82, 1675-1682.	3.0	12
26	Direct Growth of Flexible and Scalable Photocathodes from \hat{l}_{\pm} -Brass Substrates. ACS Sustainable Chemistry and Engineering, 2015, 3, 3197-3204.	6.7	9
27	Electrical conductivity of p-type BiOCl nanosheets. Chemical Communications, 2015, 51, 2629-2632.	4.1	46
28	Surface Engineered CuO Nanowires with ZnO Islands for CO ₂ Photoreduction. ACS Applied Materials & District Supplied	8.0	100
29	Highly Conducting, <i>n</i> -Type Bi ₁₂ O ₁₅ Cl ₆ Nanosheets with Superlattice-like Structure. Chemistry of Materials, 2015, 27, 7710-7718.	6.7	55
30	Rayleigh Instability Driven Nodular Cu ₂ O Nanowires via Carbothermal Reduction of CuO Nanowires. Crystal Growth and Design, 2015, 15, 1588-1595.	3.0	15
31	Charge transport in single CuO nanowires. Applied Physics Letters, 2014, 105, .	3.3	32
32	Ternary alloy nanocrystals of tin and germanium chalcogenides. RSC Advances, 2014, 4, 15695-15701.	3.6	21
33	Confined anodic aluminum oxide nanopores on aluminum wires. RSC Advances, 2014, 4, 7919.	3.6	7
34	Unravelling transient phases during thermal oxidation of copper for dense CuO nanowire growth. CrystEngComm, 2014, 16, 3264-3267.	2.6	33
35	Tetragonal Phase Germanium Nanocrystals in Lithium Ion Batteries. ACS Nano, 2013, 7, 9075-9084.	14.6	120
36	Germanium–tin alloy nanocrystals for high-performance lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 11691.	2.8	67

#	Article	IF	CITATIONS
37	Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals. RSC Advances, 2013, 3, 10349.	3.6	44
38	Photo-induced cation exchange reaction of germanium chalcogenide nanocrystals synthesized using gas-phase laser photolysis reaction. Chemical Communications, 2013, 49, 187-189.	4.1	13
39	Germanium sulfide(ii and iv) nanoparticles for enhanced performance of lithium ion batteries. Chemical Communications, 2013, 49, 4661.	4.1	76
40	Hydrogen and carbon monoxide generation from laser-induced graphitized nanodiamonds in water. Physical Chemistry Chemical Physics, 2013, 15, 7155.	2.8	11
41	Charge-Selective Surface-Enhanced Raman Scattering Using Silver and Gold Nanoparticles Deposited on Silicon–Carbon Core–Shell Nanowires. ACS Nano, 2012, 6, 2459-2470.	14.6	42
42	Nanodiamonds as photocatalysts for reduction of water and graphene oxide. Chemical Communications, 2012, 48, 696-698.	4.1	53
43	Polytypic ZnCdSe shell layer on a ZnO nanowire array for enhanced solar cell efficiency. Journal of Materials Chemistry, 2012, 22, 2157-2165.	6.7	27
44	Nb2O5 nanowire photoanode sensitized by a composition-tuned CdSxSe1â^'x shell. Journal of Materials Chemistry, 2012, 22, 8413.	6.7	22
45	High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Photodetectors and Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 26190-26196.	3.1	45
46	CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes. Journal of Materials Chemistry, 2011, 21, 4553.	6.7	65
47	Selective Nitrogen-Doping Structure of Nanosize Graphitic Layers. Journal of Physical Chemistry C, 2011, 115, 3737-3744.	3.1	52
48	Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes. Journal of Physical Chemistry C, 2011, 115, 9451-9457.	3.1	131
49	Gas-phase substitution synthesis of Cu1.8S and Cu2S superlattice nanowires from CdS nanowires. CrystEngComm, 2011, 13, 2091.	2.6	11
50	Synthesis of Auâ^'Cu ₂ S Coreâ^'Shell Nanocrystals and Their Photocatalytic and Electrocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 22141-22146.	3.1	94
51	ZnO-CdZnS Core-Shell Nanocable Arrays for Highly Efficient Photoelectrochemical Hydrogen Generation. Materials Research Society Symposia Proceedings, 2010, 1256, 1.	0.1	0
52	Terahertz Emission from Vertically-aligned Silicon Nanowires. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	0
53	Synthesized of ZnO/CdZnS/CdS core-shell nano cable arrays using by chemical vapor transport method for highly efficient photoelectrochemical hydrogen generation. , 2010, , .		0
54	Three-dimensional Structure of Twinned and Zigzagged One-dimensional Nanostructures Using Electron Tomography. Materials Research Society Symposia Proceedings, 2010, 1262, 1.	0.1	0

#	Article	IF	CITATIONS
55	Three-dimensional structure of twinned and zigzagged one-dimensional nanostructures using electron tomography. , 2010, , .		0
56	Terahertz Spectroscopy of Nanocrystalâ^'Carbon Nanotube and â^'Graphene Oxide Hybrid Nanostructures. Journal of Physical Chemistry C, 2010, 114, 11258-11265.	3.1	41
57	Composition-Tuned ZnOâ^'CdSSe Coreâ^'Shell Nanowire Arrays. ACS Nano, 2010, 4, 3789-3800.	14.6	138
58	Geometry-dependent terahertz emission of silicon nanowires. Optics Express, 2010, 18, 16353.	3.4	45
59	Three-Dimensional Structure of Twinned and Zigzagged One-Dimensional Nanostructures Using Electron Tomography. Nano Letters, 2010, 10, 1682-1691.	9.1	28
60	Terahertz spectroscopy of platinum, copper sulfide, and tin oxide nanocrystals-carbon nanotube hybrid nanostructures. , 2009, , .		1
61	Comparative Photocatalytic Ability of Nanocrystal-Carbon Nanotube and -TiO ₂ Nanocrystal Hybrid Nanostructures. Journal of Physical Chemistry C, 2009, 113, 19966-19972.	3.1	59
62	Electronic Structure of Vertically Aligned Mn-Doped CoFe ₂ O ₄ Nanowires and Their Application as Humidity Sensors and Photodetectors. Journal of Physical Chemistry C, 2009, 113, 7085-7090.	3.1	102
63	Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures. Journal of Physical Chemistry C, 2009, 113, 1251-1259.	3.1	91
64	Three-Dimensional Structure of Helical and Zigzagged Nanowires Using Electron Tomography. Nano Letters, 2008, 8, 551-557.	9.1	53
65	Synthesis of Vertically Aligned Manganese-Doped Fe ₃ O ₄ Nanowire Arrays and Their Excellent Room-Temperature Gas Sensing Ability. Journal of Physical Chemistry C, 2008, 112, 13911-13916.	3.1	48
66	Three-Dimensional Structure of Helical and Zigzagged Nanowires Using Electron Tomography. Materials Research Society Symposia Proceedings, 2008, 1144, 1.	0.1	1
67	Vertically Aligned Mn-doped Fe3O4 Nanowire Arrays: Magnetic Properties and Gas Sensing at Room Temperature. Materials Research Society Symposia Proceedings, 2007, 1032, 1.	0.1	4