Hongguang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5159254/publications.pdf Version: 2024-02-01

HONCOUNCL

#	Article	IF	CITATIONS
1	Alkylated, naphthalimide-containing ionic compounds with rich thermotropic behaviour and nonlinear optical response. Journal of Materials Chemistry C, 2022, 10, 3061-3070.	2.7	5
2	Fullerene superlattices containing charge transfer complexes for an improved nonlinear optical performance. Nanoscale, 2022, 14, 2344-2351.	2.8	6
3	AlCl ₃ -promoted growth of alkylated carbon dots with an enhanced nonlinear optical response. Journal of Materials Chemistry C, 2022, 10, 5576-5581.	2.7	3
4	Self-assembly of fullerene C ₆₀ -based amphiphiles in solutions. Chemical Society Reviews, 2022, 51, 3226-3242.	18.7	22
5	Porous organic-inorganic hybrids with nonlinear optical properties from fullerenols-metal complexation. Carbon, 2022, 191, 555-562.	5.4	11
6	Circularly Polarized Phosphorescence from Cocrystallization of Atomic Precise Silver Nanoclusters with Tartaric Acid. Advanced Optical Materials, 2022, 10, .	3.6	17
7	Lyotropic liquid crystals of tetradecyldimethylaminoxide in water and the in situ formation of gold nanomaterials. ChemPhysMater, 2022, , .	1.4	1
8	Study and Comparison on Purification Methods of Multicolor Emission Carbon Dots. Chemistry - an Asian Journal, 2021, 16, 348-354.	1.7	18
9	Facile synthesis of alkylated carbon dots with blue emission in halogenated benzene solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126129.	2.3	8
10	Decorating red-light-emissive, N-doped carbon dots on bismuth sulfide to promote the photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126397.	2.3	2
11	Supramolecular self-assemblies formed by co-assembly of carbon dots and tannic acid. Dyes and Pigments, 2021, 190, 109287.	2.0	7
12	Phase Behavior and Aggregate Transition in Aqueous Mixtures of Negatively Charged Carbon Dots and Cationic Surfactants. Journal of Physical Chemistry C, 2021, 125, 17291-17302.	1.5	7
13	Supramolecular Chirality from Hierarchical Self-Assembly of Atomically Precise Silver Nanoclusters Induced by Secondary Metal Coordination. ACS Nano, 2021, 15, 15910-15919.	7.3	42
14	One-pot synthesis of metal-free, yellow-emitting phosphor with organic single crystal as a matrix. Dyes and Pigments, 2021, 193, 109518.	2.0	6
15	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€toâ€Phosphorescence Switching. Angewandte Chemie - International Edition, 2020, 59, 9922-9927.	7.2	138
16	Magnetic and Biocompatible Fullerenol/Fe(III) Microcapsules with Antioxidant Activities. ACS Applied Bio Materials, 2020, 3, 358-368.	2.3	7
17	Self-Stabilized Giant Aggregates in Water from Room-Temperature Ionic Liquids with an Asymmetric Polar–Apolar–Polar Architecture. Journal of Physical Chemistry B, 2020, 124, 4651-4660.	1.2	0
18	Ordered structures of alkylated carbon dots and their applications in nonlinear optics. Journal of Materials Chemistry C, 2020, 8, 8980-8991.	2.7	20

HONGGUANG LI

#	Article	IF	CITATIONS
19	Photoluminescent, Ferromagnetic, and Hydrophobic Sponges for Oil–Water Separation. ACS Omega, 2020, 5, 15077-15082.	1.6	13
20	Hydrophobic Carbon Dots from Aliphatic Compounds with One Terminal Functional Group. Journal of Physical Chemistry C, 2019, 123, 22447-22456.	1,5	19
21	Fullerene-Directed Synthesis of Flowerlike Cu ₃ (PO ₄) ₂ Crystals for Efficient Photocatalytic Degradation of Dyes. Langmuir, 2019, 35, 8806-8815.	1.6	22
22	Photonic actuators with predefined shapes. Nanoscale, 2019, 11, 10088-10096.	2.8	25
23	Aggregation Behavior and Antioxidant Properties of Amphiphilic Fullerene C ₆₀ Derivatives Cofunctionalized with Cationic and Nonionic Hydrophilic Groups. Langmuir, 2019, 35, 6939-6949.	1.6	21
24	Chiral nematic latex–GO composite films with synchronous response of color and actuation. Journal of Materials Chemistry C, 2019, 7, 104-110.	2.7	13
25	Carbon skeleton doped with Co, N, S and P as efficient electrocatalyst for oxygen evolution reaction. Science China Materials, 2018, 61, 686-696.	3.5	18
26	Flexible latex photonic films with tunable structural colors templated by cellulose nanocrystals. Journal of Materials Chemistry C, 2018, 6, 2396-2406.	2.7	26
27	The effect of regioisomerism on the photophysical properties of alkylated-naphthalene liquids. Physical Chemistry Chemical Physics, 2018, 20, 2970-2975.	1.3	28
28	Hierarchically Organized Honeycomb Films Based on the Self-Assembly of Fulleromonodendrons. Journal of Physical Chemistry C, 2018, 122, 24851-24862.	1.5	4
29	Preparation and Self-Assembly of a 2:1 Polyoxometalate-Fullerene C60 Shape Amphiphile. European Journal of Inorganic Chemistry, 2018, 2018, 4255-4264.	1.0	6
30	Photoluminescent and pH-responsive supramolecular structures from co-assembly of carbon quantum dots and zwitterionic surfactant micelles. Journal of Materials Chemistry B, 2018, 6, 7021-7032.	2.9	27
31	Alumina anchored CQDs/TiO ₂ nanorods by atomic layer deposition for efficient photoelectrochemical water splitting under solar light. Journal of Materials Chemistry A, 2018, 6, 18293-18303.	5.2	36
32	Metal-Free All-Carbon Nanohybrid for Ultrasensitive Photoelectrochemical Immunosensing of alpha-Fetoprotein. ACS Sensors, 2018, 3, 1385-1391.	4.0	70
33	Aggregationâ€Induced Emission of Eu ^{III} Complexes Balanced with Bulky and Amphiphilic Imidazolium Cations in Ethanol/Water Binary Mixtures. Chemistry - A European Journal, 2018, 24, 15912-15920.	1.7	21
34	Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry - A European Journal, 2018, 24, 16609-16619.	1.7	17
35	Carbon quantum dot-based fluorescent vesicles and chiral hydrogels with biosurfactant and biocompatible small molecule. Soft Matter, 2018, 14, 6983-6993.	1.2	37
36	Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosensors and Bioelectronics, 2017, 89, 477-482.	5.3	118

HONGGUANG LI

#	Article	IF	CITATIONS
37	Production of yellow-emitting carbon quantum dots from fullerene carbon soot. Science China Materials, 2017, 60, 141-150.	3.5	53
38	Composite Films with Ordered Carbon Nanotubes and Cellulose Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 8976-8981.	1.5	22
39	Thermo-responsive graphene dispersions by liquid phase exfoliation of graphite aided by an alkylated Percec monodendron. Science China Materials, 2017, 60, 343-351.	3.5	3
40	Carbon quantum dots in ionic liquids: a new generation of environmentally benign photoluminescent inks. Journal of Materials Chemistry C, 2017, 5, 4951-4958.	2.7	39
41	Photoluminescent Honeycomb Structures from Polyoxometalates and an Imidazoliumâ€Based Ionic Liquid Bearing a π onjugated Moiety and a Branched Aliphatic Chain. Chemistry - A European Journal, 2017, 23, 7278-7286.	1.7	10
42	Viscoelasticity enhancement induced by salts for highly concentrated oil-in-water (O/W) emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 280-286.	2.3	6
43	Superstructures with diverse morphologies and highly ordered fullerene C ₆₀ arrays from 1 : 1 and 2 : 1 adamantane–C ₆₀ hybrid molecules. Nanoscale, 2017, 9, 1	63 7 5 <mark>8</mark> 163	85. ¹¹
44	Zero-charged catanionic lamellar liquid crystals doped with fullerene C ₆₀ for potential applications in tribology. Soft Matter, 2017, 13, 6250-6258.	1.2	13
45	Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO2 Photoanode In Situ. Nanomaterials, 2017, 7, 130.	1.9	31
46	Naphthaleneâ€Functionalized, Photoluminescent Room Temperature Ionic Liquids Bearing Small Counterions. Chemistry - A European Journal, 2016, 22, 6286-6293.	1.7	16
47	Properties and ionic self-assembled structures from mixture of a bola-type strong alkali dication and a branched phosphoric acid. Journal of Colloid and Interface Science, 2016, 472, 157-166.	5.0	9
48	Fluorescent vesicles formed by simple surfactants induced by oppositely-charged carbon quantum dots. Chemical Communications, 2016, 52, 12024-12027.	2.2	52
49	Alkylated fullerene as lubricant additive in paraffin oil for steel/steel contacts. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 712-719.	1.0	11
50	Robust onionlike structures with magnetic and photodynamic properties formed by a fullerene C ₆₀ –POM hybrid. Chemical Communications, 2016, 52, 12171-12174.	2.2	20
51	Spatial aromatic fences of metal–organic frameworks for manipulating the electron spin of a fulleropyrrolidine nitroxide radical. Dalton Transactions, 2016, 45, 11272-11276.	1.6	4
52	Self-Organization and Vesicle Formation of Amphiphilic Fulleromonodendrons Bearing Oligo(poly(ethylene oxide)) Chains. Langmuir, 2016, 32, 2338-2347.	1.6	17
53	Sugar-Functionalized Fullerenes. Current Organic Chemistry, 2016, 20, 1490-1501.	0.9	12
54	Determination of the critical micellar temperature of F127 aqueous solutions at the presence of sodium bromide by cyclic voltammetry. Colloid and Polymer Science, 2015, 293, 787-796.	1.0	2

HONGGUANG LI

#	Article	IF	CITATIONS
55	Tunable Amphiphilicity and Multifunctional Applications of Ionic-Liquid-Modified Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 6919-6925.	4.0	118
56	Self-Assembly and Rheological Properties of a Pseudogemini Surfactant Formed in a Salt-Free Catanionic Surfactant Mixture in Water. Langmuir, 2015, 31, 11209-11219.	1.6	36
57	Interaction between zero-charged catanionic vesicles and PEO–PPO–PEO triblock copolymers. Colloid and Polymer Science, 2014, 292, 2795-2802.	1.0	3
58	Controlled self-assembly of alkylated-ï€ compounds for soft materials — Towards optical and optoelectronic applications. Current Opinion in Colloid and Interface Science, 2014, 19, 131-139.	3.4	21
59	New insights into thermal conduction mechanisms of multi-walled carbon nanotube/ionic liquid suspensions. International Journal of Thermal Sciences, 2014, 83, 89-95.	2.6	15
60	Optoelectronic Functional Materials Based on Alkylated-ï€ Molecules: Self-Assembled Architectures and Nonassembled Liquids. Langmuir, 2013, 29, 5394-5406.	1.6	71
61	Electromotive force study on interaction between a triblock copolymer and cationic surfactants in water. Colloid and Polymer Science, 2013, 291, 1479-1486.	1.0	3
62	Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching. Journal of Materials Chemistry C, 2013, 1, 1943.	2.7	61
63	Multifunctional, Polymorphic, Ionic Fullerene Supramolecular Materials: Self-Assembly and Thermotropic Properties. Langmuir, 2011, 27, 7493-7501.	1.6	27
64	Incorporation of Carbon Nanotubes into a Lyotropic Liquid Crystal by Phase Separation in the Presence of a Hydrophilic Polymer. Langmuir, 2010, 26, 3562-3568.	1.6	30
65	Phase Transition in Salt-Free Catanionic Surfactant Mixtures Induced by Temperature. Langmuir, 2010, 26, 34-40.	1.6	36
66	Superstructures and superhydrophobic property in hierarchical organized architectures of fullerenes bearing long alkyl tails. Journal of Materials Chemistry, 2010, 20, 1253-1260.	6.7	83
67	Effect of addition of dendritic C60 amphiphiles on the structure of cationic surfactant solutions. Journal of Colloid and Interface Science, 2008, 320, 307-314.	5.0	4
68	Phase Behavior and Rheological Properties of a Salt-Free Catanionic Surfactant TTAOH/LA/H ₂ O System. Journal of Physical Chemistry B, 2008, 112, 10497-10508.	1.2	79
69	Phase Behavior of Salt-Free Catanionic Surfactant Aqueous Solutions with Fullerene C60 Solubilized. Journal of Physical Chemistry B, 2007, 111, 7719-7724.	1.2	20
70	A Salt-Free Zero-Charged Aqueous Onion-Phase Enhances the Solubility of Fullerene C60in Water. Journal of Physical Chemistry B, 2006, 110, 68-74.	1.2	25
71	Well-defined self-assembling supramolecular structures in water containing a small amount of C60. Chemical Communications, 2004, , 602.	2.2	27