Sydney E Everhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5159086/publications.pdf

Version: 2024-02-01

840776 839539 39 416 11 18 citations g-index h-index papers 49 49 49 592 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen $$ i>Phytophthora ramorum $$ /i>. MBio, 2019, 10, .	4.1	50
2	Population structure and phenotypic variation of <i>Sclerotinia sclerotiorum </i> from dry bean (<i>Phaseolus vulgaris </i>) in the United States. PeerJ, 2017, 5, e4152.	2.0	34
3	Influence of bark pH on the occurrence and distribution of tree canopy myxomycete species. Mycologia, 2008, 100, 191-204.	1.9	29
4	Effect of Y-trellis and vertical shoot positioning training systems on downy mildew and botrytis bunch rot of grape in highlands of southern Brazil. Scientia Horticulturae, 2015, 185, 162-166.	3.6	26
5	Fungicide-induced transposon movement in Monilinia fructicola. Fungal Genetics and Biology, 2015, 85, 38-44.	2.1	23
6	Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum. PLoS ONE, 2016, 11, e0168079.	2.5	23
7	Effect of four training systems on the temporal dynamics of downy mildew in two grapevine cultivars in southern Brazil. Tropical Plant Pathology, 2016, 41, 370-379.	1.5	22
8	Evaluation of tree canopy epiphytes and bark characteristics associated with the presence of corticolous myxomycetes. Botany, 2009, 87, 509-517.	1.0	21
9	Characterization of three-dimensional spatial aggregation and association patterns of brown rot symptoms within intensively mapped sour cherry trees. Annals of Botany, 2011, 108, 1195-1202.	2.9	21
10	Community-Driven Metadata Standards for Agricultural Microbiome Research. Phytobiomes Journal, 2020, 4, 115-121.	2.7	21
11	Is allelopathy from winter cover crops affecting row crops?. Agricultural and Environmental Letters, 2020, 5, e20015.	1.2	15
12	Spontaneous and Fungicide-Induced Genomic Variation in <i>Sclerotinia sclerotiorum</i> Phytopathology, 2021, 111, 160-169.	2.2	14
13	Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes. PLoS ONE, 2020, 15, e0234431.	2.5	11
14	Effect of Fungicide Applications on Monilinia fructicola Population Diversity and Transposon Movement. Phytopathology, 2016, 106, 1504-1512.	2.2	10
15	Control of white mold of dry bean and residual activity of fungicides applied by chemigation. Crop Protection, 2017, 94, 192-202.	2.1	10
16	Upper Canopy Collection and Identification of Grapevines (Vitis) from Selected Forests in the Southeastern United States. Castanea, 2010, 75, 141-149.	0.1	9
17	Differential aggressiveness of Sclerotinia sclerotiorum isolates from North and South America and partial host resistance in Brazilian soybean and dry bean cultivars. Tropical Plant Pathology, 2019, 44, 73-81.	1.5	9
18	Genetic variation and structure of Sclerotinia sclerotiorum populations from soybean in Brazil. Tropical Plant Pathology, 2019, 44, 53-64.	1.5	9

#	Article	IF	CITATIONS
19	Evaluating short-season soybean management adaptations for cover crop rotations with a crop simulation model. Field Crops Research, 2020, 250, 107734.	5.1	7
20	Population Genomics of Filamentous Plant Pathogensâ€"A Brief Overview of Research Questions, Approaches, and Pitfalls. Phytopathology, 2021, 111, 12-22.	2.2	6
21	Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum. Scientific Reports, 2021, 11, 21803.	3. 3	6
22	Cryptic Species: A Leitmotif of Contemporary Mycology Has Challenges and Benefits for Plant Pathologists. Plant Health Progress, 2016, 17, 250-253.	1.4	5
23	Characterization of Neofabraea actinidiae and N. brasiliensis as causal agents of apple bull's-eye rot in southern Brazil. Canadian Journal of Plant Pathology, 2018, 40, 229-237.	1.4	4
24	Something in the agar does not compute: on the discriminatory power of mycelial compatibility in Sclerotinia sclerotiorum. Tropical Plant Pathology, 2019, 44, 32-40.	1,5	4
25	Origin of agricultural plant pathogens: Diversity and pathogenicity of Rhizoctonia fungi associated with native prairie grasses in the Sandhills of Nebraska. PLoS ONE, 2021, 16, e0249335.	2.5	4
26	Microbe-ID: an open source toolbox for microbial genotyping and species identification. PeerJ, 2016, 4, e2279.	2.0	4
27	Evolutionary Significance of Fungal Hypermutators: Lessons Learned from Clinical Strains and Implications for Fungal Plant Pathogens. MSphere, 2022, 7, .	2.9	4
28	Impact of maize hormonal interactions on the performance of Spodoptera frugiperda in plants infected with Clavibacter michiganensis subsp. nebraskensis. Arthropod-Plant Interactions, 2021, 15, 699-706.	1.1	3
29	Genetic diversity assessments of brown rot pathogen Monilinia fructicola based on the six simple sequence repeat loci. Journal of Plant Diseases and Protection, 2021, 128, 1459-1465.	2.9	3
30	Novel geneâ€sequence markers for isolate tracking within Monilinia fructicola lesions. Pest Management Science, 2017, 73, 1822-1829.	3.4	2
31	Genetic Structure ofRhizoctonia solaniAG-2-2IIIB from Soybean in Illinois, Ohio, and Ontario. Phytopathology, 2019, 109, 2132-2141.	2.2	2
32	Diversity and Aggressiveness of <i>Rhizoctonia</i> spp. from Nebraska on Soybean and Cross-Pathogenicity to Corn and Wheat. Plant Disease, 2022, 106, 2689-2700.	1.4	2
33	Prevention and Detection of Fungicide Resistance Development in <i>Rhizoctonia zeae</i> from Soybean and Corn in Nebraska. Plant Health Progress, 2021, 22, 465-469.	1.4	1
34	19 th Annual Melhus Symposium: Data Driven Plant Health. Plant Health Progress, 2021, 22, 433-435.	1.4	0
35	Title is missing!. , 2020, 15, e0234431.		0
36	Title is missing!. , 2020, 15, e0234431.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 15, e0234431.		O
38	Title is missing!. , 2020, 15, e0234431.		0
39	Ecological and morphological differentiation among COI haplotype groups in the plant parasitic nematode species <i>Mesocriconema xenoplax</i> . Journal of Nematology, 2022, 54, .	0.9	O