List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/51588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 2019, 363, 1459-1463.	12.6	805
2	Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science, 2014, 346, 630-631.	12.6	421
3	Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 2018, 360, 621-627.	12.6	389
4	MHC genotypes associate with resistance to a frog-killing fungus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16705-16710.	7.1	324
5	Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biological Conservation, 2009, 142, 1560-1569.	4.1	257
6	Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9385-9390.	7.1	238
7	Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Molecular Phylogenetics and Evolution, 2010, 55, 1018-1031.	2.7	224
8	WHEN COLD IS BETTER: CLIMATE-DRIVEN ELEVATION SHIFTS YIELD COMPLEX PATTERNS OF DIVERSIFICATION AND DEMOGRAPHY IN AN ALPINE SPECIALIST (AMERICAN PIKA, <i>OCHOTONA PRINCEPS </i>). Evolution; International Journal of Organic Evolution, 2009, 63, 2848-2863.	2.3	218
9	Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14427-14432.	7.1	208
10	Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning. CBE Life Sciences Education, 2017, 16, ar56.	2.3	194
11	Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15Âyears of amphibian chytridiomycosis research. Ecology and Evolution, 2015, 5, 4079-4097.	1.9	191
12	Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society, 1997, 62, 421-442.	1.6	187
13	Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 194-201.	2.6	186
14	The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 2014, 37, 711-719.	4.5	182
15	Phenotypes in phylogeography: Species' traits, environmental variation, and vertebrate diversification. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8041-8048.	7.1	178
16	Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12471-12476.	7.1	161
17	Roads, Interrupted Dispersal, and Genetic Diversity in Timber Rattlesnakes. Conservation Biology, 2010, 24, 1059-1069.	4.7	158
18	Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. Royal Society Open Science, 2015, 2, 140377.	2.4	156

#	Article	IF	CITATIONS
19	HISTORICAL ISOLATION, RANGE EXPANSION, AND SECONDARY CONTACT OF TWO HIGHLY DIVERGENT MITOCHONDRIAL LINEAGES IN SPOTTED SALAMANDERS (AMBYSTOMA MACULATUM). Evolution; International Journal of Organic Evolution, 2003, 57, 1631-1652.	2.3	145
20	Tropical amphibian populations experience higher disease risk in natural habitats. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9893-9898.	7.1	144
21	The Evolution of Alternative Reproductive Strategies: Fitness Differential, Heritability, and Genetic Correlation Between the Sexes. , 2001, 92, 198-205.		133
22	Bigger isn't always better: body size, developmental and parental temperature and male territorial success in Drosophila melanogaster. Animal Behaviour, 1995, 49, 671-677.	1.9	125
23	Longâ€ŧerm endemism of two highly divergent lineages of the amphibianâ€killing fungus in the <scp>A</scp> tlantic <scp>F</scp> orest of <scp>B</scp> razil. Molecular Ecology, 2014, 23, 774-787.	3.9	115
24	More than Skin Deep: Functional Genomic Basis for Resistance to Amphibian Chytridiomycosis. Genome Biology and Evolution, 2015, 7, 286-298.	2.5	110
25	Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4687-4693.	2.6	104
26	Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153115.	2.6	104
27	Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 2017, 31, 2118-2127.	3.6	104
28	Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME Journal, 2017, 11, 349-361.	9.8	100
29	Geographical variation in genetic structure of an Atlantic Coastal Forest frog reveals regional differences in habitat stability. Molecular Ecology, 2009, 18, 2877-2896.	3.9	96
30	ITS1 Copy Number Varies among Batrachochytrium dendrobatidis Strains: Implications for qPCR Estimates of Infection Intensity from Field-Collected Amphibian Skin Swabs. PLoS ONE, 2013, 8, e59499.	2.5	96
31	Kinship, inbreeding and fineâ€scale spatial structure influence gut microbiota in a hindgutâ€fermenting tortoise. Molecular Ecology, 2015, 24, 2521-2536.	3.9	96
32	Fighting a Losing Battle: Vigorous Immune Response Countered by Pathogen Suppression of Host Defenses in the Chytridiomycosis-Susceptible Frog <i>Atelopus zeteki</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1275-1289.	1.8	95
33	Disease dynamics vary spatially and temporally in a North American amphibian. Biological Conservation, 2011, 144, 1910-1915.	4.1	94
34	Integrating individual behaviour and landscape genetics: the population structure of timber rattlesnake hibernacula. Molecular Ecology, 2008, 17, 719-730.	3.9	93
35	Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Molecular Ecology, 2006, 16, 257-274.	3.9	90
36	Toward Immunogenetic Studies of Amphibian Chytridiomycosis: Linking Innate and Acquired Immunity. BioScience, 2009, 59, 311-320.	4.9	90

#	Article	IF	CITATIONS
37	Amphibianâ€killing chytrid in <scp>B</scp> razil comprises both locally endemic and globally expanding populations. Molecular Ecology, 2016, 25, 2978-2996.	3.9	82
38	Molecular Systematics of Short-Horned Lizards: Biogeography and Taxonomy of a Widespread Species Complex. Systematic Biology, 1997, 46, 284-305.	5.6	81
39	Isolation and introgression in the Intermountain West: contrasting gene genealogies reveal the complex biogeographic history of the American pika (<i>Ochotona princeps</i>). Journal of Biogeography, 2010, 37, 344-362.	3.0	78
40	Partitioning the net effect of host diversity on an emerging amphibian pathogen. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141796.	2.6	78
41	<scp>eDNA</scp> metabarcoding: a promising method for anuran surveys in highly diverse tropical forests. Molecular Ecology Resources, 2017, 17, 904-914.	4.8	78
42	Barriers, rather than refugia, underlie the origin of diversity in toads endemic to the Brazilian Atlantic Forest. Molecular Ecology, 2014, 23, 6152-6164.	3.9	77
43	Tracking climate change in a dispersalâ€limited species: reduced spatial and genetic connectivity in a montane salamander. Molecular Ecology, 2013, 22, 3261-3278.	3.9	76
44	Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin. Molecular Ecology, 2017, 26, 4787-4797.	3.9	74
45	Size-Dependent Selective Mechanisms on Males and Females and the Evolution of Sexual Size Dimorphism in Frogs. American Naturalist, 2014, 184, 727-740.	2.1	72
46	Disease Risk in Temperate Amphibian Populations Is Higher at Closed-Canopy Sites. PLoS ONE, 2012, 7, e48205.	2.5	72
47	Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170387.	4.0	71
48	Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Molecular Ecology, 2004, 13, 1951-1963.	3.9	68
49	Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nature Ecology and Evolution, 2019, 3, 381-389.	7.8	68
50	The Evolution of Female-Biased Sexual Size Dimorphism: A Population-Level Comparative Study in Horned Lizards (Phrynosoma). Evolution; International Journal of Organic Evolution, 1998, 52, 1821.	2.3	67
51	Integrating species lifeâ€history traits and patterns of deforestation in amphibian conservation planning. Diversity and Distributions, 2010, 16, 10-19.	4.1	66
52	Cryptic species diversity reveals biogeographic support for the â€~mountain passes are higher in the tropics' hypothesis. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160553.	2.6	66
53	Cryptic lineages and Pleistocene population expansion in a Brazilian Cerrado frog. Molecular Ecology, 2012, 21, 921-941.	3.9	64
54	Phylogeography of the pitviper clade Agkistrodon: historical ecology, species status, and conservation of cantils. Molecular Ecology, 2000, 9, 411-420.	3.9	62

#	Article	IF	CITATIONS
55	HISTORICAL ISOLATION, RANGE EXPANSION, AND SECONDARY CONTACT OF TWO HIGHLY DIVERGENT MITOCHONDRIAL LINEAGES IN SPOTTED SALAMANDERS (AMBYSTOMA MACULATUM). Evolution; International Journal of Organic Evolution, 2003, 57, 1631.	2.3	62
56	Climate, physiological tolerance and sexâ€biased dispersal shape genetic structure of <scp>N</scp> eotropical orchid bees. Molecular Ecology, 2014, 23, 1874-1890.	3.9	62
57	Coalescent-based species delimitation is sensitive to geographic sampling and isolation by distance. Systematics and Biodiversity, 2020, 18, 269-280.	1.2	62
58	Fungal Infection Intensity and Zoospore Output of Atelopus zeteki, a Potential Acute Chytrid Supershedder. PLoS ONE, 2014, 9, e93356.	2.5	60
59	Inhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria. Frontiers in Microbiology, 2017, 8, 1551.	3.5	57
60	Sexual selection and alternative mating behaviours generate demographic stochasticity in small populations. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 157-164.	2.6	56
61	THE EVOLUTION OF FEMALE-BIASED SEXUAL SIZE DIMORPHISM: A POPULATION-LEVEL COMPARATIVE STUDY IN HORNED LIZARDS (<i>PHRYNOSOMA</i>). Evolution; International Journal of Organic Evolution, 1998, 52, 1821-1833.	2.3	55
62	Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity, 2012, 108, 410-418.	2.6	55
63	Linking genetic and environmental factors in amphibian disease risk. Evolutionary Applications, 2015, 8, 560-572.	3.1	55
64	Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society, 1997, 62, 421-442.	1.6	52
65	Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecology, 2017, 26, 45-50.	1.6	51
66	Rarity as an indicator of endangerment in neotropical frogs. Biological Conservation, 2014, 179, 54-62.	4.1	50
67	Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170582.	2.6	50
68	Alternative reproductive tactics in amphibians. , 0, , 300-331.		47
69	Early male reproductive advantage, multiple paternity and sperm storage in an amphibian aggregate breeder. Molecular Ecology, 2003, 12, 1567-1576.	3.9	45
70	Interaction between breeding habitat and elevation affects prevalence but not infection intensity of Batrachochytrium dendrobatidis in Brazilian anuran assemblages. Diseases of Aquatic Organisms, 2012, 97, 173-184.	1.0	45
71	Discordant patterns of evolutionary differentiation in two Neotropical treefrogs. Molecular Ecology, 2009, 18, 1375-1395.	3.9	44
72	Reed frog diversification in the Gulf of Guinea: Overseas dispersal, the progression rule, and in situ speciation. Evolution; International Journal of Organic Evolution, 2015, 69, 904-915.	2.3	44

#	Article	IF	CITATIONS
73	Polyandry, Predation, and the Evolution of Frog Reproductive Modes. American Naturalist, 2016, 188, S41-S61.	2.1	44
74	Overseas dispersal of <i>Hyperolius</i> reed frogs from Central Africa to the oceanic islands of SÃŁo Tomé and PrÃncipe. Journal of Biogeography, 2015, 42, 65-75.	3.0	43
75	Genetic diversity and gene flow decline with elevation in montane mayflies. Heredity, 2017, 119, 107-116.	2.6	42
76	Population differentiation of temperate amphibians in unpredictable environments. Molecular Ecology, 2009, 18, 3185-3200.	3.9	41
77	Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs. Immunogenetics, 2010, 62, 741-751.	2.4	41
78	Idiosyncratic responses to climateâ€driven forest fragmentation and marine incursions in reed frogs from Central Africa and the Gulf of Guinea Islands. Molecular Ecology, 2017, 26, 5223-5244.	3.9	40
79	Unexpectedly low genetic divergences among populations of the threatened bog turtle (Clyptemys) Tj ETQq1 1	0.784314 1.5	rgðð /Overloo
80	Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity, 2012, 109, 146-155.	2.6	38
81	Isolation in habitat refugia promotes rapid diversification in a montane tropical salamander. Journal of Biogeography, 2012, 39, 353-370.	3.0	37
82	Imperfect pathogen detection from nonâ€invasive skin swabs biases disease inference. Methods in Ecology and Evolution, 2018, 9, 380-389.	5.2	37
83	Extreme streams: species persistence and genomic change in montane insect populations across a flooding gradient. Ecology Letters, 2018, 21, 525-535.	6.4	35
84	Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: Potential application for conservation of a rich and threatened fauna. Biological Conservation, 2017, 215, 225-232.	4.1	34
85	Smaller Classes Promote Equitable Student Participation in STEM. BioScience, 2019, 69, 669-680.	4.9	34
86	Seasonal Variation in Population Abundance and Chytrid Infection in Stream-Dwelling Frogs of the Brazilian Atlantic Forest. PLoS ONE, 2015, 10, e0130554.	2.5	34
87	Amphibian-killing fungus loses genetic diversity as it spreads across the New World. Biological Conservation, 2012, 146, 213-218.	4.1	33
88	Reproductive success by large, closely related males facilitated by sperm storage in an aggregate breeding amphibian. Molecular Ecology, 2008, 17, 1564-1576.	3.9	32
89	Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshwater Science, 2014, 33, 288-301.	1.8	32
90	Genetic Differentiation among Mountain Island Populations of the Striped Plateau Lizard, Sceloporus virgatus (Squamata: Phrynosomatidae). Copeia, 2008, 2008, 558-564.	1.3	31

#	Article	IF	CITATIONS
91	Delayed genetic effects of habitat fragmentation on the ecologically specialized Florida sand skink (PlestiodonÂreynoldsi). Conservation Genetics, 2009, 10, 1281-1297.	1.5	31
92	Delimiting genetic units in Neotropical toads under incomplete lineage sorting and hybridization. BMC Evolutionary Biology, 2012, 12, 242.	3.2	31
93	Genetic Diversification, Vicariance, and Selection in a Polytypic Frog. Journal of Heredity, 2009, 100, 715-731.	2.4	30
94	Molecular phylogeny of Neotropical rock frogs reveals a long history of vicariant diversification in the Atlantic forest. Molecular Phylogenetics and Evolution, 2018, 122, 142-156.	2.7	30
95	Comparative structure analysis of vertebrate ribonuclease P RNA. Nucleic Acids Research, 1998, 26, 3333-3339.	14.5	29
96	Evolutionary history of <i>Scinax</i> treefrogs on landâ€bridge islands in southâ€eastern Brazil. Journal of Biogeography, 2012, 39, 1733-1742.	3.0	29
97	Thermal cues drive plasticity of desiccation resistance in montane salamanders with implications for climate change. Nature Communications, 2019, 10, 4091.	12.8	29
98	Ecoâ€evolutionary rescue promotes host–pathogen coexistence. Ecological Applications, 2018, 28, 1948-1962.	3.8	28
99	Horned lizard (Phrynosoma) phylogeny inferred from mitochondrial genes and morphological characters: understanding conflicts using multiple approaches. Molecular Phylogenetics and Evolution, 2004, 31, 961-971.	2.7	27
100	Discordance in body size, colour pattern, and advertisement call across genetically distinct populations in a Neotropical anuran (Dendropsophus ebraccatus). Biological Journal of the Linnean Society, 0, 97, 298-313.	1.6	27
101	Asymmetric Introgression in a Spotted Salamander Hybrid Zone. Journal of Heredity, 2015, 106, 608-617.	2.4	27
102	Lost and found: Frogs in a biodiversity hotspot rediscovered with environmental DNA. Molecular Ecology, 2021, 30, 3289-3298.	3.9	27
103	Conservation and divergence in the frog immunome: pyrosequencing and de novo assembly of immune tissue transcriptomes. Gene, 2014, 542, 98-108.	2.2	26
104	Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the Climate Variability Hypothesis in mayflies but not stoneflies. Global Change Biology, 2021, 27, 297-311.	9.5	26
105	Local phenotypic variation in amphibian-killing fungus predicts infection dynamics. Fungal Ecology, 2016, 20, 15-21.	1.6	25
106	Deforestation, host community structure, and amphibian disease risk. Basic and Applied Ecology, 2016, 17, 72-80.	2.7	25
107	First <i>in Vivo Batrachochytrium dendrobatidis</i> Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts. G3: Genes, Genomes, Genetics, 2017, 7, 269-278.	1.8	25
108	Urban Aquatic Habitats and Conservation of Highly Endangered Species: The Case of <i>Ambystoma mexicanum</i> (Caudata, Ambystomatidae). Annales Zoologici Fennici, 2010, 47, 223-238.	0.6	24

#	Article	IF	CITATIONS
109	Lability in Host Defenses: Terrestrial Frogs Die from Chytridiomycosis under Enzootic Conditions. Journal of Wildlife Diseases, 2013, 49, 197-199.	0.8	24
110	Lack of science support fails Brazil. Science, 2018, 361, 1322-1323.	12.6	24
111	Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Scientific Reports, 2018, 8, 7772.	3.3	24
112	Temperatureâ€mediated shifts in salamander transcriptomic responses to the amphibianâ€killing fungus. Molecular Ecology, 2020, 29, 325-343.	3.9	24
113	Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 2016, 117, 245-252.	1.0	23
114	Do Small Classes in Higher Education Reduce Performance Gaps in STEM?. BioScience, 2018, 68, 593-600.	4.9	23
115	Biotic and abiotic determinants of Batrachochytrium dendrobatidis infections in amphibians of the Brazilian Atlantic Forest. Fungal Ecology, 2021, 49, 100995.	1.6	23
116	Freshwater vertebrate and invertebrate diversity patterns in an Andean-Amazon basin: implications for conservation efforts. Neotropical Biodiversity, 2016, 2, 99-114.	0.5	22
117	Advancing Understanding of Amphibian Evolution, Ecology, Behavior, and Conservation with Massively Parallel Sequencing. Population Genomics, 2018, , 211-254.	0.5	22
118	Diverse genotypes of the amphibianâ€killing fungus produce distinct phenotypes through plastic responses to temperature. Journal of Evolutionary Biology, 2019, 32, 287-298.	1.7	22
119	Color Pattern Asymmetry as a Correlate of Habitat Disturbance in Spotted Salamanders (Ambystoma) Tj ETQq1	1 0,784314 0.5	4 rgβT /Overl
120	Relationships of the Salamandrid Genera Paramesotriton, Pachytriton, and Cynops Based on Mitochondrial DNA Sequences. Copeia, 2001, 2001, 997-1009.	1.3	20
121	First Record of Batrachochytrium dendrobatidis Infecting Four Frog Families from Peninsular Malaysia. EcoHealth, 2011, 8, 121-128.	2.0	20
122	Conservation genetics of threatened <scp>M</scp> exican axolotls (<i><scp>A</scp>mbystoma</i>). Animal Conservation, 2012, 15, 61-72.	2.9	20
123	Incapacitating effects of fungal coinfection in a novel pathogen system. Molecular Ecology, 2020, 29, 3173-3186.	3.9	20
124	High Variability in Infection Mechanisms and Host Responses: A Review of Functional Genomic Studies of Amphibian Chytridiomycosis. Herpetologica, 2020, 76, 189.	0.4	20
125	Compartment Syndrome, Fasciotomy, and Neuropathy After a Rattlesnake Envenomation: Aspects of Monitoring and Diagnosis. Wilderness and Environmental Medicine, 2006, 17, 36-40.	0.9	19
126	High Prevalence of the Amphibian Chytrid Pathogen in Gabon. EcoHealth, 2011, 8, 116-120.	2.0	19

#	Article	IF	CITATIONS
127	Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181894.	2.6	19
128	Rapid adaptation to cold in the invasive cane toad <i>Rhinella marina</i> ., 2019, 7, coy075.		19
129	Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil's Atlantic Forest treefrogs. Scientific Reports, 2020, 10, 22311.	3.3	19
130	Genomic Studies of Disease-Outcome in Host-Pathogen Dynamics. Integrative and Comparative Biology, 2014, 54, 427-438.	2.0	18
131	Gene expression varies within and between enzootic and epizootic lineages of Batrachochytrium dendrobatidis (Bd) in the Americas. Fungal Biology, 2020, 124, 34-43.	2.5	18
132	Isolation by environment and recurrent gene flow shaped the evolutionary history of a continentally distributed Neotropical treefrog. Journal of Biogeography, 2021, 48, 760-772.	3.0	18
133	Polymorphic microsatellite markers for Mexican salamanders of the genus Ambystoma. Molecular Ecology Notes, 2007, 7, 818-820.	1.7	17
134	The scale of genetic differentiation in the Dunes Sagebrush-Lizard (Sceloporus arenicolus), an endemic habitat specialist. Conservation Genetics, 2009, 10, 131-142.	1.5	17
135	Connectivity and gene flow among Eastern Tiger Salamander (Ambystoma tigrinum) populations in highly modified anthropogenic landscapes. Conservation Genetics, 2014, 15, 1447-1462.	1.5	17
136	Kinâ€bias, breeding site selection and female fitness in a cannibalistic Neotropical frog. Molecular Ecology, 2014, 23, 453-463.	3.9	17
137	Batrachochytrium dendrobatidis infection dynamics vary seasonally in upstate New York, USA. Diseases of Aquatic Organisms, 2014, 111, 51-60.	1.0	17
138	All grown-up and nowhere to go: paedomorphosis and local adaptation in <i>Ambystoma</i> salamanders in the Cuenca Oriental of Mexico. Biological Journal of the Linnean Society, 2016, 118, 582-597.	1.6	17
139	Historical biogeography and multi-trait evolution in miniature toadlets of the genus Brachycephalus (Anura: Brachycephalidae). Biological Journal of the Linnean Society, 2020, 129, 664-686.	1.6	16
140	Fang tip spread, puncture distance, and suction for snake bite. Toxicon, 2000, 38, 723-728.	1.6	15
141	Dead or alive? Viability of chytrid zoospores shed from live amphibian hosts. Diseases of Aquatic Organisms, 2016, 119, 179-187.	1.0	15
142	Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. Diversity and Distributions, 2020, 26, 1798-1812.	4.1	15
143	Response to Comment on "Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity― Science, 2020, 367,	12.6	15
144	JURISDICTION OVER ENDANGERED SPECIES' HABITAT: THE IMPACTS OF PEOPLE AND PROPERTY ON RECOVERY PLANNING. , 2002, 12, 690-700.		14

#	Article	IF	CITATIONS
145	The Brazilian Adirondacks?. Science, 2013, 340, 428-428.	12.6	14
146	Vicariance and marine migration in continental island populations of a frog endemic to the Atlantic Coastal forest. Heredity, 2015, 115, 225-234.	2.6	14
147	Prevalence and genetic diversity of <i>Batrachochytrium dendrobatidis</i> in Central African island and continental amphibian communities. Ecology and Evolution, 2017, 7, 7729-7738.	1.9	14
148	Show me you care: female mate choice based on egg attendance rather than male or territorial traits. Behavioral Ecology, 2020, 31, 1054-1064.	2.2	14
149	Molecular Systematics of Short-Horned Lizards: Biogeography and Taxonomy of a Widespread Species Complex. Systematic Biology, 1997, 46, 284.	5.6	14
150	Reproductive Mode and Female Reproductive Cycles of Two Endemic Mexican Horned Lizards (Phrynosoma taurusandPhrynosoma braconnieri). Copeia, 2000, 2000, 222-229.	1.3	13
151	Population structure in the catfish Trichogenes longipinnis: drift offset by asymmetrical migration in a tiny geographic range. Biological Journal of the Linnean Society, 0, 97, 259-274.	1.6	13
152	Contact zone dynamics during early stages of speciation in a chorus frog (Pseudacris crucifer). Heredity, 2016, 116, 239-247.	2.6	13
153	Phylogenomic Assessment of Biodiversity Using a Reference-Based Taxonomy: An Example With Horned Lizards (Phrynosoma). Frontiers in Ecology and Evolution, 2021, 9, .	2.2	13
154	Egg-laying site, fecundity and degree of sexual size dimorphism in frogs. Biological Journal of the Linnean Society, 2020, 131, 600-610.	1.6	12
155	Endemic Lineages of Batrachochytrium dendrobatidis Are Associated With Reduced Chytridiomycosis-Induced Mortality in Amphibians: Evidence From a Meta-Analysis of Experimental Infection Studies. Frontiers in Veterinary Science, 2022, 9, 756686.	2.2	12
156	Microsatellites for studies of ecology, behaviour, and evolution in Yarrow's spiny lizard (Sceloporus) Tj ETQq0	0.0 rgBT	Overlock 10
157	CONSERVATION GENETICS OF THE ENDANGERED COACHELLA VALLEY FRINGE-TOED LIZARD (UMA INORNATA). Herpetologica, 2007, 63, 411-420.	0.4	11
158	Incongruence in the pattern and timing of intra-specific diversification in bronze frogs and bullfrogs (Ranidae). Molecular Phylogenetics and Evolution, 2008, 48, 1041-1053.	2.7	11
159	Microsatellite markers for Bokermannohyla species (Anura, Hylidae) from the Brazilian Cerrado and Atlantic Forest domains. Amphibia - Reptilia, 2014, 35, 355-360.	0.5	11
160	Characterization of microsatellite markers in the threatened sand skink (Neoseps reynoldsi). Molecular Ecology Notes, 2004, 4, 691-693.	1.7	9
161	Male body size predicts reproductive success but not within-clutch paternity patterns in gopher tortoises (Gopherus polyphemus). Journal of Heredity, 2018, 109, 791-801.	2.4	9
162	Maleâ€male competition and repeated evolution of terrestrial breeding in Atlantic Coastal Forest frogs*. Evolution; International Journal of Organic Evolution, 2020, 74, 459-475.	2.3	9

#	Article	IF	CITATIONS
163	Host Defense Skin Peptides Vary with Color Pattern in the Highly Polymorphic Red-Eyed Treefrog. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	8
164	Meta-analysis of Gender Performance Gaps in Undergraduate Natural Science Courses. CBE Life Sciences Education, 2021, 20, ar40.	2.3	8
165	Unexpected reproductive fidelity in a polygynous frog. Science Advances, 2020, 6, eaay1539.	10.3	7
166	Implementing teamâ€based learning in the life sciences: A case study in an online introductory level evolution and biodiversity course. Ecology and Evolution, 2021, 11, 3527-3536.	1.9	7
167	Isolation of microsatellite loci in spotted salamanders (Ambystoma maculatum). Molecular Ecology Notes, 2002, 2, 313-315.	1.7	6
168	Microsatellite markers for Pseudoeurycea leprosa, a plethodontid salamander endemic to the Transmexican Neovolcanic Belt. Conservation Genetics Resources, 2009, 1, 5-7.	0.8	6
169	External Reinfection of a Fungal Pathogen Does not Contribute to Pathogen Growth. EcoHealth, 2018, 15, 815-826.	2.0	6
170	Characterization of microsatellite markers for snouted treefrogs in the ScinaxÂperpusillus species group (Anura, Hylidae). Conservation Genetics, 2009, 10, 1053-1056.	1.5	5
171	Magnetic capture hybridization of Batrachochytrium dendrobatidis genomic DNA. Journal of Microbiological Methods, 2012, 90, 156-159.	1.6	5
172	Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex. Immunogenetics, 2015, 67, 323-335.	2.4	5
173	Closeâ€kin mating, but not inbred parents, reduces hatching rates and offspring quality in a threatened tortoise. Journal of Evolutionary Biology, 2019, 32, 1152-1162.	1.7	5
174	Hybridization in threatened and endangered animal taxa: Implications for conservation and management of biodiversity. , 0, , 169-189.		4
175	The Semiterrestrial Tadpole of <i>Cycloramphus rhyakonastes</i> Heyer, 1983 (Anura, Cycloramphidae). Journal of Herpetology, 2016, 50, 289-294.	0.5	4
176	Power and limitations of environmental DNA metabarcoding for surveying leaf litter eukaryotic communities. Environmental DNA, 2021, 3, 528-540.	5.8	4
177	Characterization of microsatellite markers for Thoropa taophora (Anura, Cycloramphidae), a frog endemic to the Brazilian Atlantic Rain Forest. Molecular Ecology Resources, 2008, 8, 663-665.	4.8	3
178	David B. Wake (1936–2021). Science, 2021, 372, 1399-1399.	12.6	3
179	Hybridization despite elaborate courtship behavior and female choice in Neotropical tree frogs. Integrative Zoology, 2023, 18, 208-224.	2.6	3
180	Characterization of microsatellite markers for the endemic sand dune lizard,Sceloporus arenicolus. Molecular Ecology Notes, 2007, 7, 337-339.	1.7	2

#	Article	IF	CITATIONS
181	Tick parasitism as a cost of sexual selection and male parental care in a Neotropical frog. Ecosphere, 2020, 11, e03010.	2.2	2
182	Temporal and spatial diversification along the Amazonia-Cerrado transition in Neotropical treefrogs of the Boana albopunctata species group. Molecular Phylogenetics and Evolution, 2022, 175, 107579.	2.7	2
183	Novel locus-specific primers for major histocompatibility complex class II alleles from glass frogs developed via genome walking. Conservation Genetics Resources, 2012, 5, 109.	0.8	1
184	Isolation and characterization of microsatellites markers for two South American frogs (Leptodactylus bufonius and L. chaquensis) using next generation sequencing. Amphibia - Reptilia, 2014, 35, 405-412.	0.5	1
185	Active Learning Strategies for Biodiversity Science. Frontiers in Education, 2022, 7, .	2.1	1
186	Genetic variation and selection of MHC class I loci differ in two congeneric frogs. Genetica, 2018, 146, 125-136.	1.1	0
187	Forensic Phylogenetics: Implementing Tree-thinking in a Court of Law. CourseSource, 0, 6, .	0.0	0