Hanna Kokko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5158781/publications.pdf

Version: 2024-02-01

22147 31949 14,404 147 53 113 citations h-index g-index papers 173 173 173 12938 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selfish migrants: How a meiotic driver is selected to increase dispersal. Journal of Evolutionary Biology, 2022, 35, 621-632.	0.8	1
2	Kidnapping intergroup young: an alternative strategy to maintain group size in the group-living pied babbler (<i>Turdoides bicolor</i>). Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210153.	1.8	9
3	Volatile social environments can favour investments in quality over quantity of social relationships. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220281.	1.2	4
4	Selection for male stamina can help explain costly displays with cost-minimizing female choice. Behavioral Ecology and Sociobiology, 2022, 76, 1 .	0.6	0
5	Social learning by mateâ€choice copying increases dispersal and reduces local adaptation. Functional Ecology, 2021, 35, 705-716.	1.7	4
6	The tired copepod and the definition of sexual selection: a comment on Shuker and Kvarnemo. Behavioral Ecology, 2021, 32, 795-796.	1.0	1
7	Can an introduced predator select for adaptive sex allocation?. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210093.	1.2	4
8	Sexual dimorphism driven by intersexual resource competition: Why is it rare, and where to look for it?. Journal of Animal Ecology, 2021, 90, 1831-1843.	1.3	15
9	Parthenogenesis and the Evolution of Anisogamy. Cells, 2021, 10, 2467.	1.8	5
10	Pollinator behaviour and resource limitation maintain honest floral signalling. Functional Ecology, 2021, 35, 2536-2549.	1.7	8
11	Resilience of haplodiploids to being exploited by sexually deceptive plants. Oikos, 2021, 130, 2053.	1.2	3
12	The stagnation paradox: the ever-improving but (more or less) stationary population fitness. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212145.	1.2	17
13	An analysis of mating biases in trees. Molecular Ecology, 2020, 29, 184-198.	2.0	10
14	An inordinate fondness for species with intermediate dispersal abilities. Oikos, 2020, 129, 311-319.	1.2	15
15	Species coexist more easily if reinforcement is based on habitat preferences than on species recognition. Journal of Animal Ecology, 2020, 89, 2605-2616.	1.3	17
16	From zygote to a multicellular soma: Body size affects optimal growth strategies under cancer risk. Evolutionary Applications, 2020, 13, 1593-1604.	1.5	8
17	Adaptation and plasticity in life-history theory: How to derive predictions Evolution and Human Behavior, 2020, 41, 493-501.	1.4	20
18	Habitat selection of an oldâ€growth forest specialist in managed forests. Animal Conservation, 2020, 23, 547-560.	1.5	9

#	Article	IF	CITATIONS
19	Sex, senescence, sources and sinks. Functional Ecology, 2020, 34, 55-64.	1.7	10
20	Optimal germination timing in unpredictable environments: the importance of dormancy for both among―and within―season variation. Ecology Letters, 2020, 23, 620-630.	3.0	26
21	Transmissible cancers and the evolution of sex under the Red Queen hypothesis. PLoS Biology, 2020, 18, e3000916.	2.6	3
22	Coevolution of male and female mate choice can destabilize reproductive isolation. Nature Communications, 2019, 10, 5122.	5.8	12
23	The coevolution of lifespan and reversible plasticity. Nature Communications, 2019, 10, 538.	5.8	50
24	Science policies: How should science funding be allocated? An evolutionary biologists' perspective. Journal of Evolutionary Biology, 2019, 32, 754-768.	0.8	16
25	Male-only care and cuckoldry in black coucals: does parenting hamper sex life?. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182789.	1.2	13
26	Sexâ€biased dispersal: a review of the theory. Biological Reviews, 2019, 94, 721-736.	4.7	124
27	r-Strategists/K-Strategists., 2019, , 193-201.		1
28	Diverse ways to think about cancer: What can we learn about cancer by studying it across the tree of life?. Metode, $2019, , .$	0.0	0
29	<i>Daphnia</i> females adjust sex allocation in response to current sex ratio and density. Ecology Letters, 2018, 21, 629-637.	3.0	22
30	<i>Daphnia</i> invest in sexual reproduction when its relative costs are reduced. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172176.	1.2	39
31	Social transmission of avoidance among predators facilitates the spread of novel prey. Nature Ecology and Evolution, 2018, 2, 254-261.	3.4	48
32	Sex difference and Allee effects shape the dynamics of sexâ€structured invasions. Journal of Animal Ecology, 2018, 87, 36-46.	1.3	33
33	Genetics of dispersal. Biological Reviews, 2018, 93, 574-599.	4.7	182
34	Mitochondrial complementation: a possible neglected factor behind early eukaryotic sex. Journal of Evolutionary Biology, 2018, 31, 1152-1164.	0.8	3
35	Carryover effects from natal habitat type upon competitive ability lead to trait divergence or source–sink dynamics. Ecology Letters, 2018, 21, 1341-1352.	3.0	2
36	The rate of facultative sex governs the number of expected mating types in isogamous species. Nature Ecology and Evolution, 2018, 2, 1168-1175.	3.4	26

#	Article	IF	Citations
37	Abandoning the ship using sex, dispersal or dormancy: multiple escape routes from challenging conditions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170424.	1.8	27
38	Sex Allocation Theory for Facultatively Sexual Organisms Inhabiting Seasonal Environments: The Importance of Bet Hedging. American Naturalist, 2018, 192, 155-170.	1.0	9
39	Can Evolution Supply What Ecology Demands?. Trends in Ecology and Evolution, 2017, 32, 187-197.	4.2	69
40	Mitigating Mitochondrial Genome Erosion Without Recombination. Genetics, 2017, 207, 1079-1088.	1.2	21
41	Give one species the task to come up with a theory that spans them all: what good can come out of that?. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171652.	1.2	22
42	Searching for a Cancer-Proof Organism: It's the Journey That Teaches You About the Destination. , 2017, , 247-254.		1
43	Migration confers winter survival benefits in a partially migratory songbird. ELife, 2017, 6, .	2.8	32
44	The evolution of sex roles in mate searching. Evolution; International Journal of Organic Evolution, 2016, 70, 617-624.	1.1	40
45	Predation can select for later and more synchronous arrival times in migrating species. Oikos, 2016, 125, 1528-1538.	1,2	9
46	What does the geography of parthenogenesis teach us about sex?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150538.	1.8	82
47	Weird sex: the underappreciated diversity of sexual reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160262.	1.8	33
48	What do isogamous organisms teach us about sex and the two sexes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150532.	1.8	46
49	Sexual conflict and the evolution of asexuality at low population densities. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161280.	1.2	22
50	The Ecology and Evolutionary Dynamics of Meiotic Drive. Trends in Ecology and Evolution, 2016, 31, 315-326.	4.2	305
51	Models of social evolution: can we do better to predict â€~who helps whom to achieve what'?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150088.	1.8	22
52	Direct reciprocity stabilizes simultaneous hermaphroditism at high mating rates: A model of sex allocation with egg trading. Evolution; International Journal of Organic Evolution, 2015, 69, 2129-2139.	1.1	11
53	Colour polymorphism torn apart by opposing positive frequencyâ€dependent selection, yet maintained in space. Journal of Animal Ecology, 2015, 84, 1555-1564.	1.3	43
54	Cancer susceptibility and reproductive trade-offs: a model of the evolution of cancer defences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140220.	1.8	43

#	Article	IF	Citations
55	Relaxed selection when you least expect it: why declining bird populations might fail to respond to phenological mismatches. Oikos, 2015, 124, 62-68.	1.2	19
56	Why inclusive fitness can make it adaptive to produce less fit extra-pair offspring. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142716.	1.2	20
57	Towards cancer-aware life-history modelling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140234.	1.8	26
58	Mateâ€sampling costs and sexy sons. Journal of Evolutionary Biology, 2015, 28, 259-266.	0.8	22
59	Parental effects alter the adaptive value of an adult behavioural trait. ELife, 2015, 4, e07340.	2.8	27
60	Demography can favour female-advantageous alleles. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140005.	1.2	57
61	Mate finding, <scp>A</scp> llee effects and selection for sexâ€biased dispersal. Journal of Animal Ecology, 2014, 83, 1256-1267.	1.3	54
62	Troubleshooting Public Data Archiving: Suggestions to Increase Participation. PLoS Biology, 2014, 12, e1001779.	2.6	91
63	Seasonal changes in predator community switch the direction of selection for prey defences. Nature Communications, 2014, 5, 5016.	5.8	108
64	Populationâ€level consequences of risky dispersal. Oikos, 2014, 123, 1003-1013.	1.2	15
65	Population size and the rate of evolution. Trends in Ecology and Evolution, 2014, 29, 33-41.	4.2	346
66	SEXUALLY SELECTED TRAITS EVOLVE POSITIVE ALLOMETRY WHEN SOME MATINGS OCCUR IRRESPECTIVE OF THE TRAIT. Evolution; International Journal of Organic Evolution, 2014, 68, 1332-1338.	1.1	21
67	The Relationship between Sexual Selection and Sexual Conflict. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017517-a017517.	2.3	64
68	The hawk–dove game in a sexually reproducing species explains a colourful polymorphism of an endangered bird. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141794.	1.2	25
69	The Economics of Egg Trading: Mating Rate, Sperm Competition and Positive Frequency-Dependence. Dynamic Games and Applications, 2014, 4, 379-390.	1.1	6
70	Sex. Current Biology, 2014, 24, R305-R306.	1.8	10
71	Local Gamete Competition Explains Sex Allocation and Fertilization Strategies in the Sea. American Naturalist, 2014, 184, E32-E49.	1.0	27
72	Multiple mating by females is a natural outcome of a null model of mate encounters. Entomologia Experimentalis Et Applicata, 2013, 146, 26-37.	0.7	69

#	Article	IF	CITATIONS
73	PATERNITY PROTECTION CAN PROVIDE A KICK-START FOR THE EVOLUTION OF MALE-ONLY PARENTAL CARE. Evolution; International Journal of Organic Evolution, 2013, 67, 2207-2217.	1.1	24
74	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	1.9	605
75	Adaptive sex allocation in anticipation of changes in offspring mating opportunities. Nature Communications, 2013, 4, 1603.	5 . 8	42
76	The consequences of polyandry for population viability, extinction risk and conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120053.	1.8	106
77	Positive feedback and alternative stable states in inbreeding, cooperation, sex roles and other evolutionary processes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 211-221.	1.8	58
78	Unifying cornerstones of sexual selection: operational sex ratio, Bateman gradient and the scope for competitive investment. Ecology Letters, 2012, 15, 1340-1351.	3.0	155
79	The many costs of sex. Trends in Ecology and Evolution, 2012, 27, 172-178.	4.2	268
80	Betâ€hedgingâ€"a triple tradeâ€off between means, variances and correlations. Biological Reviews, 2012, 87, 742-755.	4.7	311
81	Meta-analysis and sexual selection: past studies and future possibilities. Evolutionary Ecology, 2012, 26, 1119-1151.	0.5	32
82	Sex differences in parental care. , 2012, , 101-116.		78
82	Sex differences in parental care., 2012,, 101-116. Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos, 2011, 120, 1826-1837.	1.2	78 53
	Directions in modelling partial migration: how adaptation can cause a population decline and why the	1.2	
83	Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos, 2011, 120, 1826-1837. Mate limitation causes sexes to coevolve towards more similar dispersal kernels. Oikos, 2011, 120,		53
83	Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos, 2011, 120, 1826-1837. Mate limitation causes sexes to coevolve towards more similar dispersal kernels. Oikos, 2011, 120, 1459-1468.	1.2	53
83 84 85	Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos, 2011, 120, 1826-1837. Mate limitation causes sexes to coevolve towards more similar dispersal kernels. Oikos, 2011, 120, 1459-1468. Prudent males, group adaptation, and the tragedy of the commons. Oikos, 2011, 120, 641-656.	1.2	53 20 19
83 84 85 86	Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos, 2011, 120, 1826-1837. Mate limitation causes sexes to coevolve towards more similar dispersal kernels. Oikos, 2011, 120, 1459-1468. Prudent males, group adaptation, and the tragedy of the commons. Oikos, 2011, 120, 641-656. Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4. Adaptive Secondary Sex Ratio Adjustments via Sex-Specific Infanticide in a Bird. Current Biology, 2011,	1.2 1.2 13.7	53 20 19 339
83 84 85 86	Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos, 2011, 120, 1826-1837. Mate limitation causes sexes to coevolve towards more similar dispersal kernels. Oikos, 2011, 120, 1459-1468. Prudent males, group adaptation, and the tragedy of the commons. Oikos, 2011, 120, 641-656. Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4. Adaptive Secondary Sex Ratio Adjustments via Sex-Specific Infanticide in a Bird. Current Biology, 2011, 21, 1744-1747. Two roads to two sexes: unifying gamete competition and gamete limitation in a single model of	1.2 1.2 13.7	53 20 19 339

#	Article	IF	CITATIONS
91	Evolutionary conservation advice for despotic populations: habitat heterogeneity favours conflict and reduces productivity in Seychelles magpie robins. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3477-3482.	1.2	12
92	The roles of body size and phylogeny in fast and slow life histories. Evolutionary Ecology, 2009, 23, 867-878.	0.5	98
93	EVOLUTION OF MATE CHOICE FOR GENOME-WIDE HETEROZYGOSITY. Evolution; International Journal of Organic Evolution, 2009, 63, 684-694.	1.1	64
94	Superb fairy-wren males aggregate into hidden leks to solicit extragroup fertilizations before dawn. Behavioral Ecology, 2009, 20, 501-510.	1.0	45
95	Condition-dependence, genotype-by-environment interactions and the lek paradox. Genetica, 2008, 134, 55-62.	0.5	45
96	Current analyses do not resolve whether extra-pair paternity is male or female driven. Behavioral Ecology and Sociobiology, 2008, 62, 1795-1804.	0.6	59
97	Mortality and other determinants of bird divorce rate. Behavioral Ecology and Sociobiology, 2008, 63, 1-9.	0.6	46
98	Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 2008, 21, 919-948.	0.8	756
99	Sexual Conflict: The Battle of the Sexes Reversed. Current Biology, 2008, 18, R121-R123.	1.8	21
100	Human parental age difference and offspring count: and we still do not know what men or women want. Biology Letters, 2008, 4, 259-260.	1.0	8
101	Males, females and the value of toy models: a commentary on. Biology Letters, 2008, 4, 349-350.	1.0	3
102	How populations persist when asexuality requires sex: the spatial dynamics of coping with sperm parasites. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 817-825.	1.2	46
103	r-Strategist/K-Strategists., 2008,, 3113-3122.		15
104	Evolution of frequency-dependent mate choice: keeping up with fashion trends. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1317-1324.	1.2	70
105	The tragedy of the commons in evolutionary biology. Trends in Ecology and Evolution, 2007, 22, 643-651.	4.2	370
106	Cooperative behaviour and cooperative breeding: What constitutes an explanation?. Behavioural Processes, 2007, 76, 81-85.	0.5	7
107	Do males matter? The role of males in population dynamics. Oikos, 2007, 116, 335-348.	1.2	208
108	The ecogenetic link between demography and evolution: can we bridge the gap between theory and data?. Ecology Letters, 2007, 10, 773-782.	3.0	162

#	Article	IF	CITATIONS
109	Condition-dependence, genotype-by-environment interactions and the lek paradox. Genetica, 2007, 132, 209-216.	0.5	55
110	Unifying and Testing Models of Sexual Selection. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 43-66.	3.8	454
111	Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 319-334.	1.8	569
112	From Hawks and Doves to Selfâ€Consistent Games of Territorial Behavior. American Naturalist, 2006, 167, 901-912.	1.0	182
113	WHEN NOT TO AVOID INBREEDING. Evolution; International Journal of Organic Evolution, 2006, 60, 467-475.	1.1	323
114	Why do female migratory birds arrive later than males?. Journal of Animal Ecology, 2006, 75, 1293-1303.	1.3	162
115	Temporal patterns in reproduction may explain variationin mating frequencies in the green-veined white butterfly Pieris napi. Behavioral Ecology and Sociobiology, 2006, 61, 99-107.	0.6	26
116	From Individual Dispersal to Species Ranges: Perspectives for a Changing World. Science, 2006, 313, 789-791.	6.0	316
117	When not to avoid inbreeding. Evolution; International Journal of Organic Evolution, 2006, 60, 467-75.	1.1	95
118	Useful ways of being wrong. Journal of Evolutionary Biology, 2005, 18, 1155-1157.	0.8	10
119	Bridging the gap between mechanistic and adaptive explanations of territory formation. Behavioral Ecology and Sociobiology, 2005, 57, 381-390.	0.6	37
120	Treat 'em Mean, Keep 'em (sometimes) Keen: Evolution of Female Preferences for Dominant and Coercive Males. Evolutionary Ecology, 2005, 19, 123-135.	0.5	43
121	Territorial Defense, Territory Size, and Population Regulation. American Naturalist, 2005, 166, 317-325.	1.0	130
122	Sexual selection when fertilization is not guaranteed. Evolution; International Journal of Organic Evolution, 2005, 59, 1876-85.	1.1	40
123	Competition for breeding sites and site-dependent population regulation in a highly colonial seabird, the common guillemot Uria aalge. Journal of Animal Ecology, 2004, 73, 367-376.	1.3	139
124	Alternative prey can change model-mimic dynamics between parasitism and mutualism. Ecology Letters, 2003, 6, 1068-1076.	3.0	94
125	Quantifying male attractiveness. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1925-1932.	1.2	12
126	The evolution of mate choice and mating biases. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 653-664.	1.2	733

#	Article	IF	CITATIONS
127	Dynamics of the Caring Family. American Naturalist, 2003, 161, 395-412.	1.0	29
128	The sexual selection continuum. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1331-1340.	1.2	396
129	Delayed Dispersal as a Route to Breeding: Territorial Inheritance, Safe Havens, and Ecological Constraints. American Naturalist, 2002, 160, 468-484.	1.0	225
130	Why is mutual mate choice not the norm? Operational sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic signalling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 319-330.	1.8	291
131	Cohort effects and population dynamics. Ecology Letters, 2002, 5, 338-344.	3.0	121
132	SEXUALLY TRANSMITTED DISEASE AND THE EVOLUTION OF MATING SYSTEMS. Evolution; International Journal of Organic Evolution, 2002, 56, 1091-1100.	1.1	101
133	Fisherian and "good genes―benefits of mate choice: how (not) to distinguish between them. Ecology Letters, 2001, 4, 322-326.	3.0	133
134	Dispersal, Migration, and Offspring Retention in Saturated Habitats. American Naturalist, 2001, 157, 188-202.	1.0	165
135	The evolution of cooperative breeding through group augmentation. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 187-196.	1.2	488
136	From arctic lemmings to adaptive dynamics: Charles Elton's legacy in population ecology. Biological Reviews, 2001, 76, 129-158.	4.7	7
137	Optimal and suboptimal use of compensatory responses to harvesting: timing of hunting as an example. Wildlife Biology, 2001, 7, 141-150.	0.6	66
138	BREEDING SUPPRESSION AND PREDATOR–PREY DYNAMICS. Ecology, 2000, 81, 252-260.	1.5	23
139	Social queuing in animal societies: a dynamic model of reproductive skew. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 571-578.	1.2	284
140	Female choice selects for lifetime lekking performance in black grouse males. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2109-2115.	1.2	81
141	Cuckoldry and the stability of biparental care. Ecology Letters, 1999, 2, 247-255.	3.0	105
142	Competition for early arrival in migratory birds. Journal of Animal Ecology, 1999, 68, 940-950.	1.3	601
143	Estimating the demographic effective population size of the Saimaa ringed seal (Phoca hispida) Tj $ETQq1\ 1\ 0.784$	4314 rgBT 1.5	Overlock 10
144	Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 483-488.	1.2	97

Hanna Kokko

#	Article	IF	CITATIONS
145	Should advertising parental care be honest?. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1871-1878.	1.2	193
146	Evolutionarily stable strategies of age-dependent sexual advertisement. Behavioral Ecology and Sociobiology, 1997, 41, 99-107.	0.6	279
147	Risk Analysis of Hunting of Seal Populations in the Baltic. Analisis de Riesgo de la Caza de Poblaciones de Focas en el Baltico. Conservation Biology, 1997, 11, 917-927.	2.4	20