
Antonio José Moreno Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5158174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycosidase Inhibitors as Potential HIV Entry Inhibitors?. Current Drug Metabolism, 2004, 5, 329-361.	1.2	115
2	Mixtures of Monomeric and Dimeric Surfactants: Hydrophobic Chain Length and Spacer Group Length Effects on Non Ideality. Journal of Physical Chemistry B, 2008, 112, 11942-11949.	2.6	56
3	New leads for selective inhibitors of α-l-fucosidases. Synthesis and glycosidase inhibitory activities of [(2R,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]furan derivatives. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2555-2559.	2.2	43
4	Glycosylation Methods in Oligosaccharide Synthesis. Part 2. Current Organic Synthesis, 2008, 5, 81-116.	1.3	42
5	Synthesis of novel pyrrolidine 3,4-diol derivatives as inhibitors of α-L-fucosidases. Organic and Biomolecular Chemistry, 2009, 7, 1192.	2.8	42
6	Stereoselective synthesis of (2S,3S,4R,5S)-5-methylpyrrolidine-3,4-diol derivatives that are highly selective α-l-fucosidase inhibitors. Chemical Communications, 2005, , 4949.	4.1	35
7	Synthesis of Enantiomerically Pure 1,2-Diamine Derivatives of 7-Azabicyclo[2.2.1]heptane. New Leads as Glycosidase Inhibitors and Rigid Scaffolds for the Preparation of Peptide Analogues. Journal of Organic Chemistry, 2003, 68, 5632-5640.	3.2	33
8	Polyhydroxyaminoâ€Piperidineâ€Type Iminosugars and Pipecolic Acid Analogues from a <scp>D</scp> â€Mannoseâ€Derived Aldehyde. European Journal of Organic Chemistry, 2014, 2014, 5419-5432.	2.4	32
9	Mechanistic Insight into the Binding of Multivalent Pyrrolidines to αâ€Mannosidases. Chemistry - A European Journal, 2017, 23, 14585-14596.	3.3	32
10	Dual targeting of PTP1B and glucosidases with new bifunctional iminosugar inhibitors to address type 2 diabetes. Bioorganic Chemistry, 2019, 87, 534-549.	4.1	32
11	Allenyl Sulfones and Allenyl Sulfides in the Synthesis of 3-Pyrrolines. A Novel Nucleophilic [3 + 2] Cycloaddition on Allenyl Sulfones Giving Rearranged Cycloadducts. Organic Letters, 2009, 11, 4778-4781.	4.6	31
12	Synthesis and Glycosidase Inhibition Studies of 5â€Methylâ€Substituted Tetrahydroxyindolizidines and â€pyrrolizidines Related to Natural Hyacinthacines B. European Journal of Organic Chemistry, 2013, 2013, 4047-4056.	2.4	31
13	Synthesis of [(2S,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-5-methylfuran-4-carboxylic Acid Derivatives: New Leads as Selective β-Galactosidase Inhibitors. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2335-2339.	2.2	27
14	Synthesis and anti-HIV activity of trivalent CD4-mimetic miniproteins. Bioorganic and Medicinal Chemistry, 2007, 15, 4220-4228.	3.0	27
15	6-Azido hyacinthacine A ₂ gives a straightforward access to the first multivalent pyrrolizidine architectures. Organic and Biomolecular Chemistry, 2014, 12, 6250.	2.8	27
16	Synthesis and Glycosidase Inhibitory Activities of 5-(1′,4′-Dideoxy-1′,4′-imino-D-erythrosyl)-2-methyl-3-furoic Acid (=5-[(3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylic Acid) Derivatives: New Leads as Selective -L-Fucosidase and -Galactosidase Inhibitors. Helvetica Chimica Acta, 2003, 86, 1894-1913.	1.6	26
17	Exploring a Multivalent Approach to αâ€< scp>Lâ€Fucosidase Inhibition. European Journal of Organic Chemistry, 2013, 2013, 7328-7336.	2.4	26
18	Tuning of β-glucosidase and α-galactosidase inhibition by generation and in situ screening of a library of pyrrolidine-triazole hybrid molecules. European Journal of Medicinal Chemistry, 2017, 138, 532-542.	5.5	25

#	Article	IF	CITATIONS
19	Syntheses and Biological Activities of Iminosugars as α-L-Fucosidase Inhibitors. Current Organic Synthesis, 2011, 8, 102-133.	1.3	24
20	Hetaryleneaminopolyols and Hetarylenecarbopeptoids:  a New Type of Glyco- and Peptidomimetics. Syntheses and Studies on Solution Conformation and Dynamics. Journal of Organic Chemistry, 2003, 68, 4138-4150.	3.2	23
21	Synthesis ofd- andl-2,3-trans-3,4-cis-4,5-trans-3,4-Dihydroxy-5-hydroxymethylproline and Tripeptides Containing Them. Journal of Organic Chemistry, 2004, 69, 4487-4491.	3.2	23
22	Azabicyclic vinyl sulfones for residue-specific dual protein labelling. Chemical Science, 2019, 10, 4515-4522.	7.4	23
23	Synthesis and Biological Evaluation of <i>S</i> â€Neofucopeptides as E―and Pâ€Selectin Inhibitors. European Journal of Organic Chemistry, 2008, 2008, 2973-2982.	2.4	22
24	Efficient resolution of N-Boc-7-azabicyclo[2.2.1]hept-5-en-2-one: formal syntheses of natural epibatidine and its enantiomer. Tetrahedron: Asymmetry, 2003, 14, 3173-3176.	1.8	19
25	Regioselective rearrangement of 7-azabicyclo[2.2.1]hept-2-aminyl radicals: first synthesis of 2,8-diazabicyclo[3.2.1]oct-2-enes and their conversion into 5-(2-aminoethyl)-2,3,4-trihydroxypyrrolidines, new inhibitors of α-mannosidases. Tetrahedron Letters, 2003. 44. 5069-5073.	1.4	18
26	Diversity-oriented syntheses of 7-substituted lentiginosines. Tetrahedron, 2011, 67, 9555-9564.	1.9	18
27	Three dimensional structure of a bacterial α-l-fucosidase with a 5-membered iminocyclitol inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 4751-4754.	3.0	18
28	Rapid discovery of potent \hat{l} ±-fucosidase inhibitors by in situ screening of a library of (pyrrolidin-2-yl)triazoles. Organic and Biomolecular Chemistry, 2014, 12, 5898-5904.	2.8	18
29	Exploring substituent diversity on pyrrolidine-aryltriazole iminosugars: Structural basis of β-glucocerebrosidase inhibition. Bioorganic Chemistry, 2019, 86, 652-664.	4.1	17
30	Synthesis and Conformational Analysis of Novel Trimeric Maleimide Cross-Linking Reagents. Journal of Organic Chemistry, 2007, 72, 6776-6785.	3.2	16
31	Synthesis and inhibitory activities of novel C-3 substituted azafagomines: A new type of selective inhibitors of α-l-fucosidases. Bioorganic and Medicinal Chemistry, 2010, 18, 4648-4660.	3.0	16
32	Synthesis of multimeric pyrrolidine iminosugar inhibitors of human β-glucocerebrosidase and α-galactosidase A: First example of a multivalent enzyme activity enhancer for Fabry disease. European Journal of Medicinal Chemistry, 2020, 192, 112173.	5.5	16
33	Synthesis, Biological Evaluation, WAC and NMR Studies of <i>S</i> â€Galactosides and Nonâ€Carbohydrate Ligands of Cholera Toxin Based on Polyhydroxyalkylfuroate Moieties. Chemistry - A European Journal, 2013, 19, 17989-18003.	3.3	15
34	Stable Pyrroleâ€Linked Bioconjugates through Tetrazineâ€Triggered Azanorbornadiene Fragmentation. Angewandte Chemie - International Edition, 2020, 59, 6196-6200.	13.8	15
35	Exploiting the Ring Strain in Bicyclo[2.2.1]heptane Systems for the Stereoselective Preparation of Highly Functionalized Cyclopentene, Dihydrofuran, Pyrroline, and Pyrrolidine Scaffolds. Organic Letters, 2011, 13, 6244-6247.	4.6	14
36	Reactivity of polyhydroxyalkyl-heterocycles towards Lewis acids. Tetrahedron: Asymmetry, 2001, 12, 3257-3266.	1.8	13

#	Article	IF	CITATIONS
37	Gold nanoparticles are suitable cores for building tunable iminosugar multivalency. RSC Advances, 2015, 5, 95817-95822.	3.6	13
38	Harnessing pyrrolidine iminosugars into dimeric structures for the rapid discovery of divalent glycosidase inhibitors. European Journal of Medicinal Chemistry, 2018, 151, 765-776.	5.5	13
39	Strain-promoted retro-Dieckmann-type condensation on [2.2.2]- and [2.2.1]bicyclic systems: a fragmentation reaction for the preparation of functionalized heterocycles and carbocycles. Organic and Biomolecular Chemistry, 2013, 11, 7016.	2.8	12
40	Exploring architectures displaying multimeric presentations of a trihydroxypiperidine iminosugar. Beilstein Journal of Organic Chemistry, 2015, 11, 2631-2640.	2.2	12
41	Exploring the divalent effect in fucosidase inhibition with stereoisomeric pyrrolidine dimers. Organic and Biomolecular Chemistry, 2016, 14, 4718-4727.	2.8	12
42	Structural basis of the inhibition of GH1 β-glucosidases by multivalent pyrrolidine iminosugars. Bioorganic Chemistry, 2019, 89, 103026.	4.1	12
43	Solution and solid phase synthesis of hetarylene-carbopeptoids. A new type of peptidomimetics. Tetrahedron Letters, 2001, 42, 1283-1285.	1.4	11
44	Synthesis and cancer growth inhibitory activities of 2-fatty-alkylated pyrrolidine-3,4-diol derivatives. Arkivoc, 2014, 2014, 197-214.	0.5	11
45	Stereoselective synthesis of novel five-membered homoazasugars. A convenient route to all-cis tetrasubstituted pyrrolidines. Tetrahedron Letters, 2007, 48, 159-162.	1.4	10
46	Expanding the library of divalent fucosidase inhibitors with polyamino and triazole-benzyl bridged bispyrrolidines. Organic and Biomolecular Chemistry, 2016, 14, 3212-3220.	2.8	10
47	Discovery of human hexosaminidase inhibitors by in situ screening of a library of mono- and divalent pyrrolidine iminosugars. Bioorganic Chemistry, 2022, 120, 105650.	4.1	10
48	Synthesis of a <i>C</i> ₃ ‣ymmetric Furyl yclopeptide Platform with Anion Recognition Properties. European Journal of Organic Chemistry, 2010, 2010, 4049-4055.	2.4	9
49	The regioselectivity of the addition of benzeneselenyl chloride to 7-azanorborn-5-ene-2-yl derivatives is controlled by the 2-substituent: new entry into 3- and 4-hydroxy-5-substituted prolines. Tetrahedron, 2010, 66, 7309-7315.	1.9	9
50	Total Asymmetric Synthesis of Monosaccharides and Analogues. Chimia, 2011, 65, 85-90.	0.6	8
51	Regioselectivity of the 1,3-Dipolar Cycloaddition of Organic Azides to 7-Heteronorbornadienes. Synthesis of β-Substituted Furans/Pyrroles. Journal of Organic Chemistry, 2020, 85, 8923-8932.	3.2	8
52	Discovery of a Potent α-Galactosidase Inhibitor by in Situ Analysis of a Library of Pyrrolizidine–(Thio)urea Hybrid Molecules Generated via Click Chemistry. Journal of Organic Chemistry, 2018, 83, 8863-8873.	3.2	7
53	Stable Pyrroleâ€Linked Bioconjugates through Tetrazineâ€Triggered Azanorbornadiene Fragmentation. Angewandte Chemie, 2020, 132, 6255-6259.	2.0	7
54	Diels-Alder Approaches for the Synthesis of Bridged Bicyclic Systems: Synthetic Applications of (7-hetero)norbornadienes. Current Organic Chemistry, 2016, 20, 2393-2420.	1.6	7

#	Article	lF	CITATIONS
55	Syntheses and Biological Activities of 1,4-Iminoalditol Derivatives as α-L-Fucosidase Inhibitors. Chimia, 2011, 65, 40-44.	0.6	6
56	Synthesis of 1,2,3-triazole-linked glycohybrids in the gluco-, gulo-, and allopyranose series. Chemistry of Heterocyclic Compounds, 2015, 51, 664-671.	1.2	6
57	Influence of the surfactant degree of oligomerization on the formation of cyclodextrin: surfactant inclusion complexes. Arabian Journal of Chemistry, 2020, 13, 2318-2330.	4.9	6
58	Cyanodeoxy-Glycosyl Derivatives as Substrates for Enzymatic Reactions. European Journal of Organic Chemistry, 2006, 2006, 1876-1885.	2.4	5
59	Stereoselective Synthesis of Chiral Furan Amino Acid Analogues of d- and l-Serine from d-Sugars. Synlett, 2006, 2006, 1327-1330.	1.8	4
60	New Methodology for the Stereoselective Synthesis of αâ€Furfurylamines from Sugars: Application to the Synthesis of Furyl Amino Acids and 3â€Furylisoserines. European Journal of Organic Chemistry, 2010, 2010, 3110-3119.	2.4	4
61	Monosaccharides and Analogues from Simple Achiral Unsaturated Compounds. Chimia, 2011, 65, 91-96.	0.6	3
62	Synthesis of Pyrrolidine 3,4-Diol Derivatives with Anticancer Activity on Pancreatic Tumor Cells. Heterocycles, 2014, 88, 1445.	0.7	3
63	Synthesis and Biological Evaluation of Modified 2-Deoxystreptamine Dimers. Synthesis, 2011, 2011, 1759-1770.	2.3	1
64	Synthesis of Novel 3-Amino(Hydroxy)methyl-l-fuco-Azafagomines as Leads for Selective Inhibitors of α-l-Fucosidases. Synlett, 2010, 2010, 1367-1370.	1.8	0