
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5157946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pulmonary macrophage transplantation therapy. Nature, 2014, 514, 450-454.	27.8	249
2	Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood, 2003, 102, 1515-1524.	1.4	228
3	Successful correction of the human β-thalassemia major phenotype using a lentiviral vector. Blood, 2004, 104, 3445-3453.	1.4	184
4	Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood, 2003, 102, 1506-1514.	1.4	141
5	Beyond the Definitions of the Phenotypic Complications of Sickle Cell Disease: An Update on Management. Scientific World Journal, The, 2012, 2012, 1-55.	2.1	125
6	CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nature Communications, 2019, 10, 2866.	12.8	124
7	Improved Human β-globin Expression from Self-inactivating Lentiviral Vectors Carrying the Chicken Hypersensitive Site-4 (cHS4) Insulator Element. Molecular Therapy, 2007, 15, 1863-1871.	8.2	120
8	Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nature Reviews Drug Discovery, 2019, 18, 139-158.	46.4	116
9	High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood, 2001, 98, 2664-2672.	1.4	106
10	Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium. Stem Cell Reports, 2016, 7, 110-125.	4.8	101
11	Cardiomyopathy With Restrictive Physiology in Sickle CellÂDisease. JACC: Cardiovascular Imaging, 2016, 9, 243-252.	5.3	97
12	A novel human gamma-globin gene vector for genetic correction of sickle cell anemia in a humanized sickle mouse model: critical determinants for successful correction. Blood, 2009, 114, 1174-1185.	1.4	94
13	Association between diffuse myocardial fibrosis and diastolic dysfunction in sickle cell anemia. Blood, 2017, 130, 205-213.	1.4	86
14	Placenta growth factor augments endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-11±. Blood, 2008, 112, 856-865.	1.4	78
15	High levels of placenta growth factor in sickle cell disease promote pulmonary hypertension. Blood, 2010, 116, 109-112.	1.4	77
16	Genotoxic Potential of Lineage-specific Lentivirus Vectors Carrying the β-Globin Locus Control Region. Molecular Therapy, 2009, 17, 1929-1937.	8.2	74
17	Pathophysiology and therapy for haemoglobinopathies; Part I: sickle cell disease. Expert Reviews in Molecular Medicine, 2006, 8, 1-23.	3.9	71
18	Involvement of <i>miR-30c</i> and <i>miR-301a</i> in immediate induction of plasminogen activator inhibitor-1 by placental growth factor in human pulmonary endothelial cells. Biochemical Journal, 2011, 434, 473-482.	3.7	68

#	Article	IF	CITATIONS
19	Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology. Proceedings of the United States of America, 2016, 113, E5182-91.	7.1	65
20	Mechanism of Reduction in Titers From Lentivirus Vectors Carrying Large Inserts in the 3′LTR. Molecular Therapy, 2009, 17, 1527-1536.	8.2	62
21	Biomarkers for early detection of sickle nephropathy. American Journal of Hematology, 2011, 86, 559-566.	4.1	60
22	The 3′ Region of the Chicken Hypersensitive Site-4 Insulator Has Properties Similar to Its Core and Is Required for Full Insulator Activity. PLoS ONE, 2009, 4, e6995.	2.5	58
23	Gene Therapy for Hemoglobinopathies. Hematology/Oncology Clinics of North America, 2014, 28, 199-216.	2.2	52
24	Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice. Blood, 2015, 126, 1844-1855.	1.4	51
25	Robust clinical and laboratory response to hydroxyurea using pharmacokinetically guided dosing for young children with sickle cell anemia. American Journal of Hematology, 2019, 94, 871-879.	4.1	51
26	Perforin Gene Transfer Into Hematopoietic Stem Cells Improves Immune Dysregulation in Murine Models of Perforin Deficiency. Molecular Therapy, 2015, 23, 737-745.	8.2	41
27	Placenta growth factor induces 5-lipoxygenase–activating protein to increase leukotriene formation in sickle cell disease. Blood, 2009, 113, 1129-1138.	1.4	40
28	Role of the coagulation system in the pathogenesis of sickle cell disease. Blood Advances, 2019, 3, 3170-3180.	5.2	38
29	Genetic Therapy for Beta-Thalassemia: From the Bench to the Bedside. Hematology American Society of Hematology Education Program, 2010, 2010, 445-450.	2.5	36
30	Losartan for the nephropathy of sickle cell anemia: A phaseâ€2, multicenter trial. American Journal of Hematology, 2017, 92, E520-E528.	4.1	36
31	Placenta Growth Factor (PIGF), a Novel Inducer of Plasminogen Activator Inhibitor-1 (PAI-1) in Sickle Cell Disease (SCD). Journal of Biological Chemistry, 2010, 285, 16713-16722.	3.4	35
32	p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nature Communications, 2017, 8, 14382.	12.8	35
33	The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges. Therapeutic Advances in Hematology, 2016, 7, 302-315.	2.5	33
34	Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13. Journal of Clinical Investigation, 2015, 126, 571-584.	8.2	33
35	Self-Inactivating Lentiviral Vectors Resist Proviral Methylation but Do Not Confer Position-Independent Expression in Hematopoietic Stem Cells. Molecular Therapy, 2004, 10, 249-259.	8.2	30
36	Peroxisome Proliferator-activated Receptor-α-mediated Transcription of miR-199a2 Attenuates Endothelin-1 Expression via Hypoxia-inducible Factor-1α. Journal of Biological Chemistry, 2014, 289, 36031-36047.	3.4	29

#	Article	IF	CITATIONS
37	Drug Therapies for the Management of Sickle Cell Disease. F1000Research, 2020, 9, 592.	1.6	29
38	Progression of albuminuria in patients with sickle cell anemia: a multicenter, longitudinal study. Blood Advances, 2020, 4, 1501-1511.	5.2	28
39	Erythropoietin-mediated expression of placenta growth factor is regulated via activation of hypoxia-inducible factor-11± and post-transcriptionally by miR-214 in sickle cell disease. Biochemical Journal, 2015, 468, 409-423.	3.7	24
40	Genetic Variants Associated with Therapy-Related Cardiomyopathy among Childhood Cancer Survivors of African Ancestry. Cancer Research, 2021, 81, 2556-2565.	0.9	24
41	Gene Therapy for Sickle Cell Anemia Using a Modified Gamma Globin Lentivirus Vector and Reduced Intensity Conditioning Transplant Shows Promising Correction of the Disease Phenotype. Blood, 2018, 132, 1021-1021.	1.4	23
42	Patient Perspectives on Gene Transfer Therapy for Sickle Cell Disease. Advances in Therapy, 2017, 34, 2007-2021.	2.9	22
43	MicroRNA 648 Targets ET-1 mRNA and Is Cotranscriptionally Regulated with <i>MICAL3</i> by PAX5. Molecular and Cellular Biology, 2015, 35, 514-528.	2.3	21
44	End points for sickle cell disease clinical trials: renal and cardiopulmonary, cure, and low-resource settings. Blood Advances, 2019, 3, 4002-4020.	5.2	21
45	Gene Therapy for Hemoglobinopathies: Tremendous Successes and Remaining Caveats. Molecular Therapy, 2016, 24, 668-670.	8.2	19
46	Peroxisome proliferator-activated receptor-α-mediated transcription of <i>miR-301a</i> and <i>miR-454</i> and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease. Bioscience Reports, 2015, 35, .	2.4	18
47	Diastolic dysfunction is associated with exercise impairment in patients with sickle cell anemia. Pediatric Blood and Cancer, 2018, 65, e27113.	1.5	16
48	Elimination of the fibrinogen integrin αMβ2-binding motif improves renal pathology in mice with sickle cell anemia. Blood Advances, 2019, 3, 1519-1532.	5.2	16
49	FT-4202, an oral PKR activator, has potent antisickling effects and improves RBC survival and Hb levels in SCA mice. Blood Advances, 2021, 5, 2385-2390.	5.2	16
50	Early initiation of hydroxyurea (hydroxycarbamide) using individualised, pharmacokineticsâ€guided dosing can produce sustained and nearly pancellular expression of fetal haemoglobin in children with sickle cell anaemia. British Journal of Haematology, 2021, 194, 617-625.	2.5	16
51	Vasculopathy-associated hyperangiotensinemia mobilizes haematopoietic stem cells/progenitors through endothelial AT2R and cytoskeletal dysregulation. Nature Communications, 2015, 6, 5914.	12.8	15
52	Purification of baculovirus vectors using heparin affinity chromatography. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16071.	4.1	15
53	Angiotensin receptor signaling in sickle cell anemia has a renoâ€protective effect on urine concentrating ability but results in sickle glomerulopathy. American Journal of Hematology, 2018, 93, E177-E181.	4.1	15
54	Safe and Effective <i>In Vivo</i> Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Human Gene Therapy, 2021, 32, 31-42.	2.7	15

#	Article	IF	CITATIONS
55	A Versatile Tool for the Quantification of CRISPR/Cas9-Induced Genome Editing Events in Human Hematopoietic Cell Lines and Hematopoietic Stem/Progenitor Cells. Journal of Molecular Biology, 2019, 431, 102-110.	4.2	14
56	Production and purification of high-titer foamy virus vector for the treatment of leukocyte adhesion deficiency. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16004.	4.1	13
57	Early Results from a Phase 1/2 Study of Aru-1801 Gene Therapy for Sickle Cell Disease (SCD): Manufacturing Process Enhancements Improve Efficacy of a Modified Gamma Globin Lentivirus Vector and Reduced Intensity Conditioning Transplant. Blood, 2020, 136, 20-21.	1.4	13
58	Activated Transcription Factor 3 in Association with Histone Deacetylase 6 Negatively Regulates MicroRNA 199a2 Transcription by Chromatin Remodeling and Reduces Endothelin-1 Expression. Molecular and Cellular Biology, 2016, 36, 2838-2854.	2.3	12
59	Foamy Virus Vector Carries a Strong Insulator in Its Long Terminal Repeat Which Reduces Its Genotoxic Potential. Journal of Virology, 2018, 92, .	3.4	12
60	FT-4202, an Allosteric Activator of Pyruvate Kinase-R, Demonstrates Proof of Mechanism and Proof of Concept after a Single Dose and after Multiple Daily Doses in a Phase 1 Study of Patients with Sickle Cell Disease. Blood, 2020, 136, 19-20.	1.4	12
61	Left atrial dysfunction in sickle cell anemia is associated with diffuse myocardial fibrosis, increased right ventricular pressure and reduced exercise capacity. Scientific Reports, 2020, 10, 1767.	3.3	11
62	Safety and Efficacy of Aru-1801 in Patients with Sickle Cell Disease: Early Results from the Phase 1/2 Momentum Study of a Modified Gamma Globin Gene Therapy and Reduced Intensity Conditioning. Blood, 2021, 138, 3970-3970.	1.4	11
63	Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14055.	4.1	10
64	Cerebral Metastasis of Hepatoblastoma: A Review. Journal of Pediatric Hematology/Oncology, 2016, 38, 279-282.	0.6	10
65	High Level of Perforin Expression Is Required for Effective Correction of Hemophagocytic Lymphohistiocytosis. Human Gene Therapy, 2016, 27, 847-859.	2.7	10
66	A Multi-Center, Phase-2 Trial of Losartan for the Nephropathy of Sickle Cell Anemia. Blood, 2016, 128, 265-265.	1.4	10
67	A reappraisal of the mechanisms underlying the cardiac complications of sickle cell anemia. Pediatric Blood and Cancer, 2017, 64, e26607.	1.5	8
68	CRISPR/Cas9 in allergic and immunologic diseases. Expert Review of Clinical Immunology, 2017, 13, 5-9.	3.0	8
69	Placenta growth factor mediated gene regulation in sickle cell disease. Blood Reviews, 2018, 32, 61-70.	5.7	8
70	Increased Oxidative Stress In Sickle Cell Disease Activates The Renin-Angiotensin-TGF-β Pathway To Mediate Sickle Nephropathy. Blood, 2013, 122, 2211-2211.	1.4	8
71	Hyperangiotensinemia Induces Stem Cell/Progenitor Mobilization and De-Adhesion From BM Endothelial Cells Through AT2R Signaling and Inhibition of RhoA Activity. Blood, 2012, 120, 3466-3466.	1.4	8
72	NRASQ61R mutation in human endothelial cells causes vascular malformations. Angiogenesis, 2022, 25, 331-342.	7.2	8

#	Article	IF	CITATIONS
73	Genetic Therapies for Sickle Cell Disease. Pediatric Clinics of North America, 2018, 65, 465-480.	1.8	7
74	Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis. Haematologica, 2020, 105, 1147-1157.	3.5	7
75	A Phase I Trial Of Zileuton In Sickle Cell Disease. Blood, 2013, 122, 993-993.	1.4	7
76	Production and Purification of Baculovirus for Gene Therapy Application. Journal of Visualized Experiments, 2018, , .	0.3	6
77	Abnormal submaximal cardiopulmonary exercise parameters predict impaired peak exercise performance in sickle cell anemia patients. Pediatric Blood and Cancer, 2019, 66, e27703.	1.5	6
78	Longitudinal effect of disease-modifying therapy on tricuspid regurgitant velocity in children with sickle cell anemia. Blood Advances, 2021, 5, 89-98.	5.2	6
79	Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Gene Therapy, 2023, 30, 216-221.	4.5	6
80	Phase 1 Single (SAD) and Multiple Ascending Dose (MAD) Studies of the Safety, Tolerability, Pharmacokinetics (PK) and Pharmacodynamics (PD) of FT-4202, an Allosteric Activator of Pyruvate Kinase-R, in Healthy and Sickle Cell Disease Subjects. Blood, 2019, 134, 616-616.	1.4	6
81	Implementation of nearâ€universal hydroxyurea uptake among children with sickle cell anemia: A singleâ€center experience. Pediatric Blood and Cancer, 2021, 68, e29008.	1.5	5
82	Gene therapy for hemoglobin disorders - a mini-review. , 2016, 1, 25-31.		5
83	Assessment of Cardiac Abnormalities in Sickle Cell Disease Patients Using Cardiac Magnetic Resonance Imaging (CMR). Blood, 2021, 138, 3110-3110.	1.4	4
84	Somatic Gene Therapy for X-Linked Severe Combined Immunodeficiency Using a Self-Inactivating Modified Gammaretroviral Vector Results in An Improved Preclinical Safety Profile and Early Clinical Efficacy in a Human Patient. Blood, 2011, 118, 164-164.	1.4	3
85	Rapid and automated quantitation of dense red blood cells: A robust biomarker of hydroxyurea treatment response. Blood Cells, Molecules, and Diseases, 2021, 90, 102576.	1.4	2
86	Oral Administration of FT-4202, an Allosteric Activator of Pyruvate Kinase-R, Has Potent Anti-Sickling Effects in a Sickle Cell Anemia (SCA) Mouse Model, Resulting in Improved RBC Survival and Hemoglobin Levels. Blood, 2020, 136, 21-22.	1.4	2
87	Individualized Dosing of Hydroxyurea for Children with Sickle Cell Anemia Using a Population Pharmacokinetic-Based Model: The TREAT Study. Blood, 2016, 128, 3652-3652.	1.4	2
88	Successful HPV Vaccination in Adolescents with Sickle Cell Disease Following a Quality Improvement Bundle Intervention. Blood, 2021, 138, 914-914.	1.4	2
89	Successful use of venoâ€venous extracorporeal membrane oxygenation for acute chest syndrome in a child with sickle cell disease and SARS oVâ€2. Pediatric Pulmonology, 2022, , .	2.0	2
90	Pediatric Cardio-Oncology Medicine: A New Approach in Cardiovascular Care. Children, 2021, 8, 1200.	1.5	2

PUNAM MALIK

#	Article	IF	CITATIONS
91	Cardiac pathophysiology in sickle cell disease. Journal of Thrombosis and Thrombolysis, 2021, 52, 248-259.	2.1	1
92	A Phase 2 Clinical Study of HQK-1001 (2,2-dimethylbutyrate, sodium salt), a Fetal Hemoglobin Inducer, in Patients with Sickle Cell Disease. Blood, 2011, 118, 1066-1066.	1.4	1
93	Use of the in Vitro Immortalization Assay to Quantify the Impact of Integration Spectrum and Vector Design on Insertional Mutagenesis. Blood, 2011, 118, 3123-3123.	1.4	1
94	Genetically Engineered Cures: Gene Therapy for Sickle Cell Disease. , 2007, , 295-309.		1
95	Safety Of a Gamma Globin Expressing Lentivirus Vector In a Non-Human Primate Model For Gene Therapy Of Sickle Cell Disease. Blood, 2013, 122, 2896-2896.	1.4	1
96	Diffuse Myocardial Fibrosis Is a Common Feature of Sickle Cell Anemia That Is Associated with Diastolic Dysfunction and Restrictive Cardiac Physiology. Blood, 2016, 128, 8-8.	1.4	1
97	Angiotensin Signaling Is Essential for Stress Erythropoiesis but Results in Retention of Dysfunctional Mitochondria in Erythrocytes That Generate Excessive Reactive Oxygen Species. Blood, 2020, 136, 31-32.	1.4	1
98	Sickle Cell Disease Is Associated with Reduced Adenosine Deaminase Catalytic Activity, Resulting in Altered Adenosine Metabolism. Blood, 2011, 118, 1078-1078.	1.4	0
99	Gene Therapy for Hemophagocytic Lymphohistiocytosis (HLH): Fixing a Criticial â€~Circuit Breaker' in the Immune System Blood, 2012, 120, 3158-3158.	1.4	0
100	Diminished Multi-Organ Pathologies and Inflammation Associated With Sickle Cell Disease In Mice With Genetically Limited Prothrombin Levels. Blood, 2013, 122, 729-729.	1.4	0
101	Patient Perceptions Of Treatments In SCD: Implications For Gene Transfer Therapy. Blood, 2013, 122, 5555-5555.	1.4	0
102	Reactive Oxygen Species Produced by NADPH Oxidase Contribute to Cardiac Pathology in a Mouse Model of Sickle Cell Disease. Blood, 2016, 128, 853-853.	1.4	0
103	Foamy Virus Backbone Has Insulator Properties Which Remarkably Reduce Its Genotoxicity Potential. Blood, 2016, 128, 1002-1002.	1.4	0
104	Progression of Albuminuria in Sickle Cell Anemia: A Multicenter, Longitudinal Study. Blood, 2019, 134, 1004-1004.	1.4	0
105	Longitudinal Effect of Hydroxyurea Therapy on Left Ventricular Diastolic Function in Sickle Cell Anemia. Blood, 2019, 134, 1006-1006.	1.4	0
106	Association of Thrombospondin-1 Gene Polymorphism with Elevated Tricuspid Regurgitant Velocity in Sickle Cell Anemia. Blood, 2021, 138, 2027-2027.	1.4	0
107	Rapid and Automated Quantitation of Dense Red Blood Cells: A Robust Biomarker of Therapeutic Response to Early Initiation of Hydroxyurea in Young Children with Sickle Cell Anemia. Blood, 2020, 136, 16-17.	1.4	0
108	Bone Marrow (BM) Delivery of Genetically-Modified (gm) Adult CD34+ Hematopoietic Stem and Progenitor Cells (HSPC) Improves Homing and Engraftment of Short-Term Progenitors over Long-Term Repopulating Hematopoietic Stem Cells. Blood, 2020, 136, 22-23.	1.4	0

#	Article	IF	CITATIONS
109	Increased Hydroxyurea Prescribing Practices over Ten Years with Improved Clinical Outcomes in Children with Sickle Cell Anemia: A Single Center's Experience. Blood, 2020, 136, 34-34.	1.4	0