
Stephanie Hoeppener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5157853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical modification of self-assembled silane based monolayers by surface reactions. Chemical Society Reviews, 2010, 39, 2323.	38.1	346
2	Synthesis and Modification of Carbon Nanomaterials utilizing Microwave Heating. Advanced Materials, 2015, 27, 4113-4141.	21.0	251
3	Acylhydrazones as Reversible Covalent Crosslinkers for Selfâ€Healing Polymers. Advanced Functional Materials, 2015, 25, 3295-3301.	14.9	203
4	Oneâ€Component Intrinsic Selfâ€Healing Coatings Based on Reversible Crosslinking by Diels–Alder Cycloadditions. Macromolecular Chemistry and Physics, 2013, 214, 1636-1649.	2.2	128
5	Constructive Microlithography: Electrochemical Printing of Monolayer Template Patterns Extends Constructive Nanolithography to the Micrometerâ^'Millimeter Dimension Range. Nano Letters, 2003, 3, 761-767.	9.1	125
6	Tuning solution polymer properties by binary water–ethanolsolvent mixtures. Soft Matter, 2008, 4, 103-107.	2.7	110
7	Selfâ€Healing Materials via Reversible Crosslinking of Poly(ethylene oxide)â€≺i>Blockâ€Poly(furfuryl) Tj ETQq 4921-4932.	1 1 0.784 14.9	314 rgBT /0 107
8	Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polymer Chemistry, 2016, 7, 1711-1718.	3.9	81
9	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11, 4243.	12.8	79
10	A schizophrenic gradient copolymer: switching and reversing poly(2-oxazoline) micelles based on UCST and subtle solvent changes. Soft Matter, 2009, 5, 3590.	2.7	76
11	Solvent Responsive Micelles Based on Block and Gradient Copoly(2-oxazoline)s. Macromolecules, 2008, 41, 1581-1583.	4.8	73
12	Tuning the morphologies of amphiphilic metallo-supramolecular triblock terpolymers: from spherical micelles to switchable vesicles. Soft Matter, 2009, 5, 84-91.	2.7	73
13	Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymerâ€Based Nanoparticles. Advanced Materials, 2018, 30, 1703704.	21.0	67
14	Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications. Advanced Materials, 2022, 34, e2105015.	21.0	60
15	Functionalized, Biocompatible Coating for Superparamagnetic Nanoparticles by Controlled Polymerization of a Thioglycosidic Monomer. Biomacromolecules, 2011, 12, 681-691.	5.4	58
16	Oxidation-responsive micelles by a one-pot polymerization-induced self-assembly approach. Polymer Chemistry, 2018, 9, 1593-1602.	3.9	55
17	Surface chemical reactions on self-assembled silane based monolayers. Chemical Society Reviews, 2021, 50, 6507-6540.	38.1	53
18	Local Probe Oxidation of Selfâ€Assembled Monolayers: Templates for the Assembly of Functional Nanostructures. Angewandte Chemie - International Edition, 2009, 48, 1732-1739.	13.8	50

#	Article	IF	CITATIONS
19	Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers. Nanotechnology, 2008, 19, 035703.	2.6	49
20	Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs. Analytica Chimica Acta, 2016, 939, 93-100.	5.4	48
21	Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation. Journal of Materials Chemistry B, 2013, 1, 2789.	5.8	47
22	Tunable synthesis of poly(ethylene imine)–gold nanoparticle clusters. Chemical Communications, 2014, 50, 88-90.	4.1	45
23	Smart pH-Sensitive Nanogels for Controlled Release in an Acidic Environment. Biomacromolecules, 2019, 20, 130-140.	5.4	43
24	3rd generation poly(ethylene imine)s for gene delivery. Journal of Materials Chemistry B, 2017, 5, 1258-1274.	5.8	41
25	Strategies for Postâ€ S ynthesis Alignment and Immobilization of Carbon Nanotubes. Advanced Materials, 2011, 23, 953-970.	21.0	40
26	Survey of Plasmonic Nanoparticles: From Synthesis to Application. Particle and Particle Systems Characterization, 2014, 31, 721-744.	2.3	40
27	Thermosensitive spontaneous gradient copolymers with block- and gradient-like features. Polymer Chemistry, 2017, 8, 5023-5032.	3.9	40
28	Dual pH and ultrasound responsive nanoparticles with pH triggered surface charge-conversional properties. Polymer Chemistry, 2017, 8, 1328-1340.	3.9	38
29	Effect of Hydrophilic Monomer Distribution on Selfâ€Assembly of a pHâ€Responsive Copolymer: Spheres, Worms and Vesicles from a Single Copolymer Composition. Angewandte Chemie - International Edition, 2021, 60, 4925-4930.	13.8	35
30	Patterned Polymer Brushes Grafted from Bromine-Functionalized, Chemically Active Surface Templates. Small, 2007, 3, 220-225.	10.0	34
31	Patterned Organosilane Monolayers as Lyophobicâ^'Lyophilic Guiding Templates in Surface Self-Assembly: Monolayer Self-Assembly versus Wetting-Driven Self-Assembly. Langmuir, 2009, 25, 13984-14001.	3.5	34
32	Fabrication via Electrochemical Oxidation of Self-Assembled Monolayers and Site-Selective Derivatization of Surface Templates. Small, 2005, 1, 628-632.	10.0	33
33	Self-assembly of chiral block and gradient copolymers. Soft Matter, 2012, 8, 165-172.	2.7	31
34	The Selective Heating of Iron Nanoparticles in a Singleâ€Mode Microwave for the Patterned Growths of Carbon Nanofibers and Nanotubes. Advanced Functional Materials, 2009, 19, 1287-1292.	14.9	30
35	Microwave-Assisted Fabrication of Carbon Nanotube AFM Tips. Nano Letters, 2010, 10, 4009-4012.	9.1	30
36	Microwave-Assisted Silver Nanoparticle Film Formation for SERS Applications. Journal of Physical Chemistry C, 2016, 120, 1237-1244.	3.1	30

STEPHANIE HOEPPENER

#	Article	IF	CITATIONS
37	Nanoscale Materials Patterning by Local Electrochemical Lithography. Advanced Engineering Materials, 2016, 18, 890-902.	3.5	29
38	Self-organization of rod–coil tri- and tetra-arm star metallo-supramolecular block copolymers in selective solvents. Soft Matter, 2009, 5, 2954.	2.7	28
39	Dual Responsive Nanoparticles from a RAFT Copolymer Library for the Controlled Delivery of Doxorubicin. Macromolecules, 2016, 49, 3856-3868.	4.8	28
40	Polymersomes with Endosomal pH-Induced Vesicle-to-Micelle Morphology Transition and a Potential Application for Controlled Doxorubicin Delivery. Biomacromolecules, 2017, 18, 3280-3290.	5.4	28
41	Micellar dye shuttle between water and an ionic liquid. Soft Matter, 2011, 7, 3827.	2.7	27
42	Microwave synthesis of carbon nanofibers – the influence of MW irradiation power, time, and the amount of catalyst. Journal of Materials Chemistry A, 2015, 3, 23778-23787.	10.3	27
43	Fluorescent amphiphilic heterografted comb polymers comprising biocompatible PLA and PEtOx side chains. Polymer Chemistry, 2016, 7, 6064-6074.	3.9	26
44	Beyond Gene Transfection with Methacrylate-Based Polyplexes—The Influence of the Amino Substitution Pattern. Bioconjugate Chemistry, 2018, 29, 2181-2194.	3.6	26
45	Morphologies of Spin-Coated Films of a Library of Diblock Copoly(2-oxazoline)s and Their Correlation to the Corresponding Surface Energies. Macromolecular Rapid Communications, 2006, 27, 405-411.	3.9	25
46	Selfâ€Assembly Behavior of Bis(terpyridine) and Metalloâ€bis(terpyridine) Pluronics in Dilute Aqueous Solutions. Macromolecular Chemistry and Physics, 2010, 211, 2323-2330.	2.2	24
47	Tuning the morphology of triblock terpoly(2-oxazoline)s containing a 2-phenyl-2-oxazoline block with varying fluorine content. Soft Matter, 2013, 9, 5966.	2.7	24
48	Investigating the Motion of Diblock Copolymer Assemblies in Ionic Liquids by In Situ Electron Microscopy. Advanced Materials, 2013, 25, 761-765.	21.0	23
49	Emulsion Polymerizations for a Sustainable Preparation of Efficient TEMPOâ€based Electrodes. ChemSusChem, 2021, 14, 449-455.	6.8	23
50	Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery. International Journal of Pharmaceutics, 2021, 593, 120080.	5.2	23
51	Polymer relief microstructures by inkjet etching. Journal of Materials Chemistry, 2007, 17, 3045.	6.7	22
52	Amphiphilic brushes from metallo-supramolecular block copolymers. Soft Matter, 2009, 5, 1460.	2.7	21
53	Tuneable Time Delay in the Burst Release from Oxidation ensitive Polymersomes Made by PISA. Angewandte Chemie - International Edition, 2021, 60, 24716-24723.	13.8	21
54	Guided Self-Assembly of Fe3O4 Nanoparticles on Chemically Active Surface Templates Generated by Electro-Oxidative Nanolithography. Current Nanoscience, 2006, 2, 135-141.	1.2	20

#	Article	IF	CITATIONS
55	Upper critical solution temperature switchable micelles based on polystyreneâ€∢i>blockâ€poly(methyl) Tj ET	Qq1_1 0.7 2.3	84314 rgBT 20
56	Probeâ€Based Electroâ€Oxidative Lithography of OTS SAMs Deposited onto Transparent ITO Substrates. Advanced Functional Materials, 2012, 22, 4376-4382.	14.9	20
57	Solution self-assembly of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether)-block-poly(allyl) Tj ETQq1 1 0.78 5, 6943-6956.	4314 rgB7 3.9	Overlock 1 20
58	The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. Journal of Nanobiotechnology, 2021, 19, 292.	9.1	20
59	Poly(dimethylsiloxane)â€Substituted 2,2′:6,2″â€Terpyridines: Synthesis and Characterization of New Amphiphilic Supramolecular Diblock Copolymers. Macromolecular Chemistry and Physics, 2008, 209, 1666-1672.	2.2	19
60	On the Synthesis of Carbon Nanofibers and Nanotubes by Microwave Irradiation: Parameters, Catalysts, and Substrates. Advanced Functional Materials, 2009, 19, 2819-2825.	14.9	19
61	Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120404.	5.2	19
62	Blocked isocyanates: an efficient tool for post-polymerization modification of polymers. Polymer Chemistry, 2014, 5, 2574.	3.9	18
63	Multiple micellar morphologies from tri―and tetrablock copoly(2â€oxazoline)s in binary water–ethanol mixtures. Journal of Polymer Science Part A, 2010, 48, 3095-3102.	2.3	17
64	Freeâ€Standing Carbon Nanofibrous Films Prepared by a Fast Microwaveâ€Assisted Synthesis Process. Advanced Functional Materials, 2014, 24, 1602-1608.	14.9	17
65	Ordered Arrangement and Optical Properties of Silica‣tabilized Gold Nanoparticle–PNIPAM Core–Satellite Clusters for Sensitive Raman Detection. Small, 2017, 13, 1701095.	10.0	17
66	Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano, 2021, 15, 12298-12313.	14.6	17
67	Tumor targeting with pH-responsive poly(2-oxazoline)-based nanogels for metronomic doxorubicin treatment. Oncotarget, 2018, 9, 22316-22331.	1.8	17
68	Hierarchical, Guided Self-Assembly of Preselected Carbon Nanotubes for the Controlled Fabrication of CNT Structures by Electrooxidative Nanolithography. Langmuir, 2013, 29, 7515-7520.	3.5	15
69	Reversible Nanopatterning on Polypyrrole Films by Atomic Force Microscope Electrochemical Lithography. Advanced Functional Materials, 2016, 26, 614-619.	14.9	15
70	Remendable polymers via reversible Diels–Alder cycloaddition of anthracene ontaining copolymers with fullerenes. Journal of Applied Polymer Science, 2018, 135, 45916.	2.6	15
71	One polymer composition, various morphologies: the decisive influence of conditions on the polymerization-induced self-assembly (PISA) of <i>N</i> acryloyl thiomorpholine. Nanoscale, 2020, 12, 20171-20176.	5.6	15
72	One-pot synthesis of PLA-b-PHEA via sequential ROP and RAFT polymerizations. Polymer Chemistry, 2017, 8, 6086-6098.	3.9	15

STEPHANIE HOEPPENER

#	Article	IF	CITATIONS
73	Tailoring Cellular Uptake and Fluorescence of Poly(2-oxazoline)-Based Nanogels. Bioconjugate Chemistry, 2017, 28, 1229-1235.	3.6	14
74	The influence of directed hydrogen bonds on the self-assembly of amphiphilic polymers in water. Journal of Colloid and Interface Science, 2019, 557, 488-497.	9.4	14
75	Improved gene delivery to K-562 leukemia cells by lipoic acid modified block copolymer micelles. Journal of Nanobiotechnology, 2021, 19, 70.	9.1	14
76	Targeted delivery of a phosphoinositide 3â€kinase γ inhibitor to restore organ function in sepsis. EMBO Molecular Medicine, 2021, 13, e14436.	6.9	14
77	Correlating the mechanical and surface properties with the composition of triblock copoly(2-oxazoline)s. Journal of Materials Chemistry, 2009, 19, 222-229.	6.7	13
78	Cellular uptake of PLA nanoparticles studied by light and electron microscopy: synthesis, characterization and biocompatibility studies using an iridium(<scp>iii</scp>) complex as correlative label. Chemical Communications, 2016, 52, 4361-4364.	4.1	13
79	Influence of Core Cross-Linking and Shell Composition of Polymeric Micelles on Immune Response and Their Interaction with Human Monocytes. Biomacromolecules, 2020, 21, 1393-1406.	5.4	13
80	Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/mPEGS-1 Inhibitor BRP-187. Polymers, 2021, 13, 2557.	4.5	13
81	Plasmonic nanoparticle clusters with tunable plasmonic resonances in the visible spectral region. Journal of Materials Chemistry C, 2014, 2, 6415.	5.5	12
82	Fabrication of PEDOT–OTS-patterned ITO substrates. Journal of Materials Chemistry, 2010, 20, 6618.	6.7	11
83	Amphiphilic supramolecular A(B)2A quasi-triblock copolymers. Polymer Chemistry, 2013, 4, 3177.	3.9	10
84	Incorporation of core–shell particles into methacrylate based composites for improvement of the mechanical properties. Polymer Chemistry, 2015, 6, 5273-5280.	3.9	10
85	Unraveling Decisive Structural Parameters for the Self-Assembly of Supramolecular Polymer Bottlebrushes Based on Benzene Trisureas. Macromolecules, 2020, 53, 7552-7560.	4.8	10
86	â€~Clicking' on the nanoscale: 1,3-dipolar cycloaddition of terminal acetylenes on azide functionalized, nanometric surface templates with nanometer resolution. Nanotechnology, 2009, 20, 135302.	2.6	9
87	Impact of amino acids on the aqueous self-assembly of benzenetrispeptides into supramolecular polymer bottlebrushes. Polymer Chemistry, 2020, 11, 6763-6771.	3.9	9
88	Elucidating preparation-structure relationships for the morphology evolution during the RAFT dispersion polymerization of <i>N</i> -acryloyl thiomorpholine. Polymer Chemistry, 2021, 12, 1668-1680.	3.9	9
89	A combined experimental and in silico approach to determine the compatibility of poly(ester amide)s and indomethacin in polymer nanoparticles. European Polymer Journal, 2021, 156, 110606.	5.4	9
90	Contact Angle Analysis During the Electroâ€oxidation of Selfâ€Assembled Monolayers Formed by <i>n</i> â€Octadecyltrichlorosilane. Advanced Functional Materials, 2010, 20, 3252-3259.	14.9	8

#	Article	IF	CITATIONS
91	Fabrication of ring structures by anodization lithography on self-assembled OTS monolayers. Journal of Materials Chemistry, 2011, 21, 8532.	6.7	8
92	Microwaveâ€Assisted Synthesis of Core–Shell Nanoparticles—Insights into the Growth of Different Geometries. Particle and Particle Systems Characterization, 2020, 37, 2000019.	2.3	8
93	Optimized Encapsulation of the FLAP/PGES-1 Inhibitor BRP-187 in PVA-Stabilized PLGA Nanoparticles Using Microfluidics. Polymers, 2020, 12, 2751.	4.5	8
94	Gold Nanoparticle Cluster Arrays for Highâ€Performance SERS Substrates Fabricated by Electroâ€oxidative Lithography. ChemNanoMat, 2016, 2, 781-785.	2.8	7
95	Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	7
96	Microwave-Assisted Polymer Modifications. Advances in Polymer Science, 2016, , 209-240.	0.8	6
97	Formulation of Liver-Specific PLGA-DY-635 Nanoparticles Loaded with the Protein Kinase C Inhibitor Bisindolylmaleimide I. Pharmaceutics, 2020, 12, 1110.	4.5	6
98	Kinetically Controlling the Length of Self-Assembled Polymer Nanofibers Formed by Intermolecular Hydrogen Bonds. ACS Macro Letters, 2021, 10, 837-843.	4.8	6
99	pH-responsive SERS substrates based on AgNP-polyMETAC composites on patterned self-assembled monolayers. Nanotechnology, 2020, 31, 465604.	2.6	6
100	Shear-Thinning and Rapidly Recovering Hydrogels of Polymeric Nanofibers Formed by Supramolecular Self-Assembly. Chemistry of Materials, 2022, 34, 2206-2217.	6.7	6
101	New Design Concepts for the Fabrication of Nanometric Gap Structures: Electrochemical Oxidation of OTS Mono―and Bilayer Structures. Small, 2012, 8, 852-857.	10.0	5
102	Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells—Insights Gained by TEM Investigations. Advanced Biology, 2018, 2, 1700254.	3.0	5
103	Controlling donor crystallinity and phase separation in bulk heterojunction solar cells by the introduction of orthogonal solvent additives. MRS Advances, 2018, 3, 1891-1900.	0.9	5
104	Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polymer Chemistry, 2021, 12, 911-925.	3.9	5
105	Inkjet-printed microband electrodes for a cost-efficient state-of-charge monitoring in redox flow batteries. Sensors and Actuators B: Chemical, 2022, 369, 132291.	7.8	5
106	Selfâ€Healing Materials: Acylhydrazones as Reversible Covalent Crosslinkers for Selfâ€Healing Polymers (Adv. Funct. Mater. 22/2015). Advanced Functional Materials, 2015, 25, 3278-3278.	14.9	4
107	Degradable polycaprolactone nanoparticles stabilized <i>via</i> supramolecular host–guest interactions with pH-responsive polymer-pillar[5]arene conjugates. Polymer Chemistry, 2020, 11, 1985-1997.	3.9	4
108	On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations. Beilstein Journal of Nanotechnology, 2021, 12, 541-551.	2.8	4

STEPHANIE HOEPPENER

#	Article	IF	CITATIONS
109	Poly(2-oxazoline) Homopolymers and Diblock Copolymers Containing Retinoate ω-End Groups. ACS Applied Polymer Materials, 0, , .	4.4	4
110	Micropatterns of [Fe-Fe]-Hydrogenase Active-Site Model Complexes Fabricated by Electro-Oxidative Lithography. Langmuir, 2015, 31, 11748-11753.	3.5	3
111	Inkjetâ€Printing of Supercapacitors. ChemistrySelect, 2020, 5, 11322-11330.	1.5	3
112	Adjusting the length of supramolecular polymer bottlebrushes by top-down approaches. Beilstein Journal of Organic Chemistry, 2021, 17, 2621-2628.	2.2	3
113	Formation of Iron Oxide Particles by Reduction with Hydrazine. ChemPhysChem, 2011, 12, 781-784.	2.1	2
114	Siteâ€Specific Chemical Surface Functionalization and Electronic Patterning of Graphene by Electrooxidative Lithography. ChemPhysChem, 2016, 17, 2863-2871.	2.1	2
115	Metal–Polymer Hybrid Nanoparticles for Correlative Highâ€Resolution Light and Electron Microscopy. Particle and Particle Systems Characterization, 2017, 34, 1700180.	2.3	2
116	Overcoming the Necessity of a Lateral Aggregation in the Formation of Supramolecular Polymer Bottlebrushes in Water. Macromolecular Rapid Communications, 2021, 42, 2000585.	3.9	2
117	Revisiting staining of biological samples for electron microscopy: perspectives for recent research. Materials Horizons, 2021, 8, 685-699.	12.2	2
118	Triazole-Functionalized Mesoporous Materials Based on Poly(styrene-block-lactic acid): A Morphology Study of Thin Films. Polymers, 2022, 14, 2231.	4.5	2
119	Verification of Selected Key Assumptions for the Analysis of Depthâ€Sensing Indentation Data. Macromolecular Materials and Engineering, 2013, 298, 78-88.	3.6	1
120	Einfluss der Verteilung hydrophiler Monomere auf die Selbstassemblierung eines pHâ€responsiven Copolymers: Kugeln, WA¼rmer und Vesikel aus einer einzigen Copolymerkomposition. Angewandte Chemie, 2021, 133, 4975-4981.	2.0	1
121	Encapsulation of the anti-inflammatory dual FLAP/sEH inhibitor diflapolin improves the efficiency in human whole blood. Journal of Pharmaceutical Sciences, 2021, , .	3.3	1
122	Electron Density of Polymeric Nanoparticles Determined by Image Processing of Transmission Electron Micrographs: Insights into Heavy Metal Staining Processes. Particle and Particle Systems Characterization, 2019, 36, 1800324.	2.3	0
123	Tuneable time delay in the burst release from oxidation sensitive polymersomes made by PISA. Angewandte Chemie, 0, , .	2.0	0