Udochukwu B Akuru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5157776/publications.pdf

Version: 2024-02-01

1478280 887953 36 359 17 6 citations h-index g-index papers 36 36 36 294 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative Design and Performance Analysis of 10 kW Rare-Earth and Non-Rare Earth Flux Reversal Wind Generators. Energies, 2022, 15, 636.	1.6	6
2	Optimization and Performance Evaluation of Non-Overlap Wound-Field Converter-Fed and Direct-Grid Wind Generators. IEEE Access, 2022, 10, 40587-40595.	2.6	6
3	Potentials of Brushless Stator-Mounted Machines in Electric Vehicle Drives—A Literature Review. World Electric Vehicle Journal, 2022, 13, 93.	1.6	5
4	Non-Conventional, Non-Permanent Magnet Wind Generator Candidates. Wind, 2022, 2, 429-450.	0.6	4
5	AN OVERVIEW ON COGGING TORQUE AND TORQUE RIPPLE REDUCTION IN FLUX SWITCHING MACHINES. International Journal of Power and Energy Systems, 2021, 41, .	0.2	6
6	Modelling and Simulation of a DC-excited Vernier Reluctance Machine as a Synchronous Condenser. , $2021, , .$		1
7	On the Electromagnetic Performance Prediction of Turbo Synchronous Condensers Based on Wound-Field Flux Switching Machine Design. IEEE Transactions on Industry Applications, 2021, 57, 3687-3698.	3.3	6
8	Cross-Coupling Inductance Parameter Estimation for More Accurate Performance Evaluation of Wound-Field Flux Modulation Machines. Electronics (Switzerland), 2020, 9, 1748.	1.8	11
9	Design and Performance Assessment of a Small-Scale Ferrite-PM Flux Reversal Wind Generator. Energies, 2020, 13, 5565.	1.6	6
10	Optimisation and Design Performance of a Small-Scale DC Vernier Reluctance Machine for Direct-Drive Wind Generator Drives. , 2020, , .		5
11	Bringing Back the Synchronous Compensator for the South Africa Power Network—Simulation and Compensator Technology. , 2019, , .		4
12	Performance Evaluation of 5.5 kW Six-Phase Asynchronous Motor., 2019,,.		4
13	A Modest Attempt on the Electromagnetic Design and Performance Prediction of Turbo Wound-Field Flux Switching Synchronous Condensers. , 2019, , .		3
14	Potentials of locally manufactured wound-field flux switching wind generator in South Africa. Journal of Energy in Southern Africa, 2019, 30, 110-117.	0.5	3
15	Formulation and Multiobjective Design Optimization of Wound-Field Flux Switching Machines for Wind Energy Drives. IEEE Transactions on Industrial Electronics, 2018, 65, 1828-1836.	5.2	42
16	Novel Experimentation of a 10 kW Geared Medium-Speed Wound-Field Flux Switching Wind Generator Drive. , 2018, , .		9
17	Design Optimisation and Comparison of Large-Scale Non-Overlap Wound-Field Machines., 2018,,.		3
18	Design Optimisation and Performance Evaluation of Flux Switching Machines for Geared Medium-Speed Wind Generator Drives. , 2018, , .		2

#	Article	IF	Citations
19	Design and Investigation of Low-cost PM Flux Switching Machine for Geared Medium-speed Wind Energy Applications. Electric Power Components and Systems, 2018, 46, 1084-1092.	1.0	5
20	Optimisation and design comparison of 10-kW and 3-MW PM flux-switching machines for geared medium-speed wind power generators. Electrical Engineering, 2018, 100, 2509-2525.	1.2	3
21	Intriguing Behavioral Characteristics of Rare-Earth-Free Flux Switching Wind Generators at Smalland Large-Scale Power Levels. IEEE Transactions on Industry Applications, 2018, 54, 5772-5782.	3.3	30
22	Design topology of a sustainable remote-controlled fan regulator for developing countries. Renewable and Sustainable Energy Reviews, 2017, 71, 639-644.	8.2	0
23	Towards 100% renewable energy in Nigeria. Renewable and Sustainable Energy Reviews, 2017, 71, 943-953.	8.2	111
24	Performance comparison of optimum wound-field and ferrite PM flux switching machines for wind energy applications. , $2016, \dots$		13
25	Evaluation of flux switching PM machines for medium-speed wind generator drives. , 2015, , .		6
26	Comparative advantage of flux switching PM machines for medium-speed wind drives. , 2015, , .		4
27	Harnessing Nigeria's abundant solar energy potential using the DESERTEC model. Journal of Energy in Southern Africa, 2015, 26, 105-110.	0.5	1
28	Contemporary wind generators. Journal of Energy in Southern Africa, 2015, 26, 116-124.	0.5	6
29	Contemporary wind generators. , 2014, , .		2
30	Economic implications of constant power outages on SMEs in Nigeria. Journal of Energy in Southern Africa, 2014, 25, 61-66.	0.5	15
31	Impact of renewable energy deployment on climate change in Nigeria. , 2013, , .		4
32	Electromagnetic Wave Effect on Human Health: Challenges for Developing Countries. , 2012, , .		7
33	Revolutionalising engineering programmes in developing countries by incorporating a mechatronics curriculum. , $2011, \ldots$		0
34	A Prediction on Nigeria's Oil Depletion Based on Hubbert's Model and the Need for Renewable Energy. ISRN Renewable Energy, 2011, 2011, 1-6.	0.3	6
35	Renewable energy investment in Nigeria: A review of the renewable energy master plan. , 2010, , .		17
36	Economic Implications of Constant Power Outages on SMEs in Nigeria. SSRN Electronic Journal, 0, , .	0.4	3