List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5157630/publications.pdf Version: 2024-02-01

		218381	315357
112	2,251	26	38
papers	citations	h-index	g-index
113	113	113	852
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient extraction and theoretical insights for separating <i>o</i> â€; <i>m</i> â€; and <i>p</i> â€cresol from model coal tar by an ionic liquid [<scp>Emim</scp>][<scp>DCA</scp>]. Canadian Journal of Chemical Engineering, 2022, 100, .	0.9	9
2	Multiscale evaluation of the efficiently separation of phenols using a designed cationic functionalized ionic liquid based on BrÃ,nsted/Lewis coordination. Journal of Molecular Liquids, 2022, 345, 117901.	2.3	12
3	Liquid-liquid phase behavior for waterÂ+Â2,2-difluoroethanol with three imidazole-based ionic liquids. Journal of Molecular Liquids, 2022, 345, 117836.	2.3	10
4	lsobaric vapour-liquid equilibrium for binary and ternary systems of isopropyl acetate, isopropyl alcohol, acetic acid and water at 101.3ÂkPa. Journal of Chemical Thermodynamics, 2022, 165, 106662.	1.0	5
5	Molecular mechanism and extraction explorations for separation of pyridine from coal pyrolysis model mixture using protic ionic liquid [Hnmp][HSO4]. Fuel, 2022, 309, 122130.	3.4	12
6	Comparative evaluation of <scp>liquid–liquid</scp> equilibria for extraction of 2,2,3, <scp>3â€ŧetrafluoroâ€1â€propanol</scp> from water by a <scp>ZIFâ€8â€porous</scp> ionic liquid. Journa of Chemical Technology and Biotechnology, 2022, 97, 933-942.	1.6	4
7	Liquid-liquid equilibria for separation of benzothiophene from model fuel oil: Solvent screening and thermodynamic modeling. Journal of Chemical Thermodynamics, 2022, 167, 106693.	1.0	10
8	Extraction and interaction insights for enhanced separation of phenolic compounds from model coal tar using a hydroxyl-functionalized ionic liquid. Chemical Engineering Research and Design, 2022, 178, 567-574.	2.7	17
9	Liquid-liquid extraction and mechanism exploration for separation of mixture 2,2,3,3-Tetrafluoro-1-propanol and water using pyridine-based ionic liquids. Journal of Molecular Liquids, 2022, 360, 119468.	2.3	7
10	Liquid-liquid equilibrium data for ternary mixtures (waterÂ+ÂisopropanolÂ+Â1-pentanol/1-hexanol/1-heptanol) at 298.15ÂK: Measurement, correlation and prediction. Journal of Chemical Thermodynamics, 2022, 174, 106871.	1.0	5
11	Separation of azeotropic mixture (acetoneÂ+Ân-heptane) by extractive distillation with intermediate and heavy boiling entrainers: Vapour-liquid equilibrium measurements and correlation. Journal of Chemical Thermodynamics, 2021, 152, 106284.	1.0	21
12	Measurement and Thermodynamic Modeling of Ternary Liquid–Liquid Equilibrium for Extraction of 2,6-Xylenol from Aromatic Hydrocarbon Mixtures with Different Solvents. Journal of Chemical & Engineering Data, 2021, 66, 330-337.	1.0	21
13	Liquid-liquid equilibrium measurements and interaction explorations for separation of azeotrope n-butyl acetate and n-butanol using three ionic liquids. Journal of Chemical Thermodynamics, 2021, 155, 106349.	1.0	26
14	ZIF-8-porous ionic liquids for the extraction of 2,2,3,3-tetrafluoro-1-propanol and water mixture. New Journal of Chemistry, 2021, 45, 8557-8562.	1.4	9
15	Facile Synthesis of ZnSAPO-34 Zeolite via a ZnO Route. Catalysis Letters, 2021, 151, 2223.	1.4	0
16	Construction of SAPO-34/SiO ₂ composite: effective catalyst for methanol to olefins reaction. New Journal of Chemistry, 2021, 45, 15497-15502.	1.4	4
17	Liquid–Liquid Equilibrium for Ternary Systems (Ethyl Acetate/Isopropyl Acetate + 2,2-Difluoroethanol) Tj ETQq1	1 0,7843 1.0	814 rgBT /Ov
18	Extraction performance evaluation and theoretical analysis of removal of phenol from oil mixture using a dualâ€functionalized ionic liquid: 1â€hydroxyethylâ€3â€methylimidazolium propionate. Journal of Chemical Technology and Biotechnology, 2021, 96, 1947-1953.	1.6	10

#	Article	IF	CITATIONS
19	Explorations of Liquid–Liquid Phase Equilibrium for the Mixture (Isopropanol + Water) with Pyridinium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 2192-2199.	1.0	10
20	Energy efficient and environmentally friendly pervaporation-distillation hybrid process for ternary azeotrope purification. Computers and Chemical Engineering, 2021, 147, 107236.	2.0	11
21	Liquid–Liquid-Phase Equilibrium for Quaternary Systems (<i>n</i> -Decane + 1-Tetradecene +) Tj ETQq1 1 0.78 Diesel. Journal of Chemical & Engineering Data, 2021, 66, 2803-2811.	4314 rgBT 1.0	Överlock 10 14
22	Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids. Journal of Environmental Chemical Engineering, 2021, 9, 105255.	3.3	14
23	Extraction of allyl alcohol from its aqueous solution using two different ionic liquids: Intermolecular interaction and liquid-liquid phase equilibrium explorations. Journal of Molecular Liquids, 2021, 336, 116875.	2.3	9
24	Comprehensive evaluation of the role of phenolate based ionic liquid on extracting pyrrole from diverse sources: A combined molecular dynamics simulation study and experiment validation. Journal of Molecular Liquids, 2021, 334, 116525.	2.3	7
25	Process design, evaluation and control for separation of 2,2,3,3â€tetrafluoroâ€1â€propanol and water by extractive distillation using ionic liquid 1â€ethylâ€3â€methylimidazolium acetate. Journal of Chemical Technology and Biotechnology, 2021, 96, 3175-3184.	1.6	6
26	Separation of indole by designed ionic liquids with dual functional chemical sites: Mechanism exploration and experimental validation. Journal of Environmental Chemical Engineering, 2021, 9, 105971.	3.3	6
27	Intermolecular Interaction and Extraction Explorations for Separation of High-Boiling Neutral Nitrogen Compounds Using Biodegradable Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 15839-15848.	3.2	14
28	Separation of the Azeotropic Mixture Methanol and Toluene Using Extractive Distillation: Entrainer Determination, Vapor–Liquid Equilibrium Measurement, and Modeling. ACS Omega, 2021, 6, 34736-34743.	1.6	10
29	Performance of functionalized ionic liquid with double chemical sites for separating phenolic compounds: mechanism and liquid-liquid behavior studies. Journal of Environmental Chemical Engineering, 2021, 9, 106790.	3.3	11
30	Liquid-liquid equilibrium measurements and interaction exploration for separation of isobutyl alcohol + isobutyl acetate by imidazolium-based ionic liquids with different anions. Journal of Chemical Thermodynamics, 2020, 141, 105932.	1.0	22
31	Vapor–Liquid Equilibrium Study of Binary Mixtures of Chloroform, 2-Ethylhexanoic Acid, and Propylene Glycol Methyl Ether at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2020, 65, 2271-2279.	1.0	5
32	Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method. Frontiers of Chemical Science and Engineering, 2020, 14, 824-833.	2.3	21
33	Separation of cresol from coal tar by imidazolium-based ionic liquid [Emim][SCN]: Interaction exploration and extraction experiment. Fuel, 2020, 264, 116908.	3.4	58
34	Liquid–Liquid Equilibrium for Ternary Mixture Water + (n-Propanol/Isopropanol) + Cyclohexanone at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2020, 65, 233-238.	1.0	13
35	Liquid-liquid phase equilibrium and interaction exploration for separation of azeotrope (2,2,3,3-tetrafluoro-1-propanolÂ+Âwater) with two imidazolium-based ionic liquids. Journal of Molecular Liquids, 2020, 300, 112266.	2.3	28
36	Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water: Liquid-liquid equilibrium measurements and interaction exploration. Journal of Chemical Thermodynamics, 2020, 142, 106011.	1.0	18

#	Article	IF	CITATIONS
37	Separation of azeotropic mixture isopropyl alcoholÂ+ ethyl acetate by extractive distillation: Vapor-liquid equilibrium measurements and interaction exploration. Fluid Phase Equilibria, 2020, 507, 112428.	1.4	17
38	Thermal coupled extractive distillation sequences with three entrainers for the separation of azeotrope isopropyl alcohol + diisopropyl ether. Journal of Chemical Technology and Biotechnology, 2020, 95, 1590-1603.	1.6	11
39	Separation of isopropanol from its aqueous solution with deep eutectic solvents: liquid–liquid equilibrium measurement and thermodynamic modeling. Brazilian Journal of Chemical Engineering, 2020, 37, 569-576.	0.7	13
40	Separation of <i>m</i> -Cresol from Coal Tar Model Oil Using Propylamine-Based Ionic Liquids: Extraction and Interaction Mechanism Exploration. ACS Omega, 2020, 5, 23090-23098.	1.6	21
41	Isobaric Vapor–Liquid Equilibrium of Binary Systems (Isopropyl Acetate/Isopropyl Alcohol + Dibutyl) Tj ETQq1 1	0,784314 1.0	rgBT /Overld
42	Multiscale Exploration and Experimental Insights into Separating Neutral Heterocyclic Nitrogen Compounds Using [emim][NO ₃] as an Extractant. ACS Sustainable Chemistry and Engineering, 2020, 8, 5662-5673.	3.2	42
43	Energy-Saving Exploration of Mixed Solvent Extractive Distillation Combined with Thermal Coupling or Heat Pump Technology for the Separation of an Azeotrope Containing Low-Carbon Alcohol. Industrial & Engineering Chemistry Research, 2020, 59, 13204-13219.	1.8	31
44	Vapour-liquid equilibrium measurements and correlation for separating azeotropic mixture (ethyl) Tj ETQq0 0 0 r	gBT /Overlo	ock 10 Tf 50
45	Entrainers selection and vapour-liquid equilibrium measurements for separating azeotropic mixtures (ethanolÂ+Ân-hexane/cyclohexane) by extractive distillation. Journal of Chemical Thermodynamics, 2020, 144, 106070.	1.0	17
46	Entrainers selection and vapour-liquid equilibrium measurements for isopropyl acetate with propyl propionate, butyl propionate, and butyl butyrate at 101.3ÂkPa. Journal of Chemical Thermodynamics, 2020, 146, 106107.	1.0	4
47	Extraction and mechanism exploration for separating cresols from coal tar by ionic liquid ethanolamine lactate. Journal of Molecular Liquids, 2020, 305, 112845.	2.3	29
48	Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis. Journal of Molecular Liquids, 2020, 306, 112911.	2.3	41
49	Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water by extractive distillation using ionic liquids: Vapor-liquid equilibrium measurements and interaction analysis. Journal of Molecular Liquids, 2019, 292, 111424.	2.3	25
50	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements. Journal of Chemical Thermodynamics, 2019, 138, 205-210.	1.0	16
51	Liquid–Liquid Equilibrium Measurements and Correlation for Ternary Systems (Butyl Acetate +) Tj ETQq1 1 0.7 Engineering Data, 2019, 64, 3244-3249.	84314 rgB ⁻ 1.0	T /Overlock] 14
52	Ternary Liquid–Liquid Equilibrium of Toluene + Dimethyl Carbonate + ILs at 298.15 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2019, 64, 3598-3605.	1.0	6
53	Measurement and Correlation of Vapor–Liquid Equilibrium for Binary Systems of Dimethyl Carbonate with Butyl Butyrate, o-Xylene, and Cyclohexanone at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 5210-5217.	1.0	7
54	Vapor–Liquid Equilibrium for Binary of 1-Butanol + <i>N</i> , <i>N</i> -Dimethylacetamide and Methyl Isobutyl Ketone + <i>N</i> , <i>N</i> -Dimethylacetamide at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 4142-4147.	1.0	7

#	Article	IF	CITATIONS
55	Liquid–Liquid Equilibrium of Isobutyl Acetate + Isobutyl Alcohol + Imidazolium-Based Ionic Liquids at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2019, 64, 778-783.	1.0	23
56	Multiscale modeling and liquid-liquid equilibria insights for the extraction of heterocyclic nitrogen compounds from coal tar via [emim][TOS] as extractant. Journal of Molecular Liquids, 2019, 277, 825-832.	2.3	35
57	Vapour-liquid equilibrium measurements and extractive distillation process design for separation of azeotropic mixture (dimethyl carbonateâ€~+†ethanol). Journal of Chemical Thermodynamics, 2019, 133, 10-18.	1.0	12
58	Deep eutectic solvents effect on vapor-liquid phase equilibrium for separation of allyl alcohol from its aqueous solution. Journal of Molecular Liquids, 2019, 279, 524-529.	2.3	24
59	Liquid–Liquid Equilibrium for Ternary Systems of <i>N</i> -Methylformamide + Pyrrole/Indole + Alkanes at 298.15 K: Phase Equilibrium Measurement and Correlation. Journal of Chemical & Engineering Data, 2019, 64, 3085-3091.	1.0	8
60	Fluoride removal from secondary effluent of the graphite industry using electrodialysis: Optimization with response surface methodology. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	24
61	Direct reductive coupling of nitroarenes and alcohols catalysed by Co–N–C/CNT@AC. Green Chemistry, 2019, 21, 2129-2137.	4.6	44
62	Vapor–Liquid Phase Equilibrium for Separation of Isopropanol from Its Aqueous Solution by Choline Chloride-Based Deep Eutectic Solvent Selected by COSMO-SAC Model. Journal of Chemical & Engineering Data, 2019, 64, 1338-1348.	1.0	22
63	Ternary liquid-liquid equilibrium of methanol + isopropyl acetate/methyl methacrylate†+ 1-methylmidazole hydrogen sulfate at different temperatures and 1 atm. Journal of Molecular Liquids, 2019, 283, 515-521.	2.3	6
64	Separation of the mixture (isopropyl alcohol + diisopropyl ether + n-propanol): Entrainer selection, interaction exploration and vapour-liquid equilibrium measurements. Journal of Chemical Thermodynamics, 2019, 135, 27-34.	1.0	16
65	Optimization of decanter temperature in separating partially miscible homoazeotrope to reduce cost and energy consumption. Journal of Chemical Technology and Biotechnology, 2019, 94, 1998-2008.	1.6	5
66	Liquid-liquid measurement and correlation for separation of azeotrope (dimethyl carbonate and) Tj ETQq0 0 0 rg	BT/Qverlov 1.4	ck_10 Tf 50 3
67	Choline chloride based deep eutectic solvents selection and liquid-liquid equilibrium for separation of dimethyl carbonate and ethanol. Journal of Molecular Liquids, 2019, 275, 347-353.	2.3	58
68	Vapour–liquid equilibrium and extractive distillation for separation of azeotrope isopropyl alcohol and diisopropyl ether. Journal of Chemical Thermodynamics, 2019, 131, 294-302.	1.0	26
69	Separation of heterocyclic nitrogen compounds from coal tar fractions via ionic liquids: COSMO-SAC screening and experimental study. Chemical Engineering Communications, 2019, 206, 1199-1217.	1.5	34
70	Isobaric Vapor–Liquid Phase Equilibrium Measurements for Allyl Alcohol with Chloroform, Ethyl Acetate, and Methyl Propionate at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 682-687.	1.0	6
71	Isobaric Vapor–Liquid Equilibrium Measurements for Separation of Azeotrope (Methanol + Methyl) Tj ETQq1 1	0.784314 1.0	rgBT /Overic
72	MEASUREMENTS AND THERMODYNAMIC MODELING OF VAPOR-LIQUID EQUILIBRIA FOR BINARY SYSTEMS OF ISOPROPYL CHLOROACETATE WITH CYCLOHEXANE, ISOPROPANOL AND BENZENE AT 101.3 kPa. Brazilian Journal of Chemical Engineering, 2019, 36, 1717-1725.	0.7	0

#	Article	IF	CITATIONS
73	Separation of Dimethyl Carbonate and Methanol by Deep Eutectic Solvents: Liquid–Liquid Equilibrium Measurements and Thermodynamic Modeling. Journal of Chemical & Engineering Data, 2018, 63, 1234-1239.	1.0	34
74	Measurement and Correlation of Isobaric Vapor–Liquid Equilibrium for Binary Systems of Allyl Alcohol with Isobutyl Acetate, Butyl Acetate, and Butyl Propionate at 101.3 kPa. Journal of Chemical & Engineering Data, 2018, 63, 845-852.	1.0	9
75	Separation of azeotrope (ethanol and ethyl methyl carbonate) by different imidazolium-based ionic liquids: Ionic liquids interaction analysis and phase equilibrium measurements. Journal of Molecular Liquids, 2018, 261, 89-95.	2.3	70
76	One-pot template-free preparation of mesoporous MgO-ZrO 2 catalyst for the synthesis of dipropyl carbonate. Applied Catalysis A: General, 2018, 555, 130-137.	2.2	14
77	Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties. ACS Applied Materials & Interfaces, 2018, 10, 2850-2858.	4.0	11
78	Salts effect on isobaric vaporâ^'liquid equilibrium for separation of the azeotropic mixture allyl alcoholÂ+ water. Fluid Phase Equilibria, 2018, 457, 11-17.	1.4	22
79	Synthesis cooling water system with air coolers. Chemical Engineering Research and Design, 2018, 131, 643-655.	2.7	18
80	Separation of thioglycolic acid from its aqueous solution by ionic liquids: Ionic liquids selection by the COSMO-SAC model and liquid-liquid phase equilibrium. Journal of Chemical Thermodynamics, 2018, 118, 263-273.	1.0	76
81	Separation of azeotrope (allyl alcohol†+†water): Isobaric vapour-liquid phase equilibrium measurements and extractive distillation. Journal of Chemical Thermodynamics, 2018, 118, 139-146.	1.0	48
82	Liquid-liquid equilibrium determination and thermodynamics modeling for extraction of isopropanol from its aqueous solution. Fluid Phase Equilibria, 2018, 458, 40-46.	1.4	45
83	Dynamic Control of Hybrid Processes with Liquid–Liquid Extraction for Propylene Glycol Methyl Ether Dehydration. Industrial & Engineering Chemistry Research, 2018, 57, 13811-13820.	1.8	8
84	Liquid-liquid equilibrium measurement and thermodynamics modeling for the systems waterÂ+ thioglycolic acidÂ+ isopropyl ether/methyl tert-butyl ether at 298.15 and 308.15ÂK. Fluid Phase Equilibria, 2018, 476, 126-130.	1.4	10
85	Solventâ€Free Synthesis of Surfactants of Highâ€Carbon Alkyl Phosphates Used for Cosmetics. Journal of Surfactants and Detergents, 2018, 21, 789-795.	1.0	4
86	Efficient Extraction of Neutral Heterocyclic Nitrogen Compounds from Coal Tar via Ionic Liquids and Its Mechanism Analysis. Energy & Fuels, 2018, 32, 9358-9370.	2.5	48
87	Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water) via heterogeneous azeotropic distillation by energy-saving dividing-wall column: Process design and control strategies. Chemical Engineering Research and Design, 2018, 135, 52-66.	2.7	30
88	Isobaric Vapor–Liquid Phase Equilibrium Measurements, Correlation, and Prediction for Separation of the Mixtures of Cyclohexanone and Alcohols. Journal of Chemical & Engineering Data, 2018, 63, 2038-2045.	1.0	7
89	Recovering Wastewater in a Cooling Water System with Thermal Membrane Distillation. Industrial & Engineering Chemistry Research, 2018, 57, 10491-10499.	1.8	10
90	Measurement and Modeling of Liquid–Liquid Equilibrium for the Systems Vinyl Acetate + Acetic Acid/Ethanol + Water at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2017, 62, 1240-1246.	1.0	26

#	Article	IF	CITATIONS
91	Measurement and Correlation of Phase Equilibria for Isobutyl Acetate + {Ethanol or Methanol} + Water at 303.15 and 323.15 K. Journal of Chemical & Engineering Data, 2017, 62, 1587-1593.	1.0	9
92	Cooperative effect from cation and anion of pyridine-containing anion-based ionic liquids for catalysing CO2 transformation at ambient conditions. Science China Chemistry, 2017, 60, 958-963.	4.2	42
93	Measurement and thermodynamic modelling of ternary liquid-liquid equilibrium for extraction of thioglycolic acid from aqueous solution with different solvents. Journal of Chemical Thermodynamics, 2017, 113, 229-235.	1.0	34
94	Isobaric Vapor–Liquid Equilibrium for Binary Systems of Cyclohexanone + Benzene, Cyclohexanone + Toluene, and Cyclohexanone + <i>p</i> -Xylene at 101.3 kPa. Journal of Chemical & Engineering Data, 2017, 62, 1948-1954.	1.0	16
95	Separation of the mixture pyridine + methylbenzene via several acidic ionic liquids: Phase equilibrium measurement and correlation. Fluid Phase Equilibria, 2017, 440, 103-110.	1.4	45
96	Liquid-liquid equilibrium for ternary systems of ethyl acetate/isopropyl acetate+2,2,3,3-tetrafluoro-1-propanol+water at 298.15, 318.15K. Journal of Chemical Thermodynamics, 2017, 106, 218-227.	1.0	51
97	Isobaric Vapor–Liquid Equilibrium for Binary Systems of Thioglycolic Acid with Water, Butyl Acetate, Butyl Formate, and Isobutyl Acetate at 101.3 kPa. Journal of Chemical & Engineering Data, 2017, 62, 355-361.	1.0	29
98	Extraction and mechanism for the separation of neutral N -compounds from coal tar by ionic liquids. Fuel, 2017, 194, 27-35.	3.4	88
99	Solubility Determination and Thermodynamic Modeling of Sodium Thioglycolate in Pure and Binary Solvent Mixtures from <i>T</i> = (293.15 to 333.15) K. Journal of Chemical & Engineering Data, 2017, 62, 3105-3123.	1.0	6
100	Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water): Isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation. Journal of Chemical Thermodynamics, 2017, 115, 19-26.	1.0	43
101	Separation of Azeotropes Hexane + Ethanol/1-Propanol by Ionic Liquid Extraction: Liquid–Liquid Phase Equilibrium Measurements and Thermodynamic Modeling. Journal of Chemical & Engineering Data, 2017, 62, 4296-4300.	1.0	15
102	Measurements and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols. Journal of Chemical Thermodynamics, 2016, 102, 155-163.	1.0	22
103	Isobaric Vapor–Liquid Equilibrium for Binary Systems of Allyl Alcohol with Water, Methanol, and Ethanol at 101.3 kPa. Journal of Chemical & Engineering Data, 2016, 61, 2071-2077.	1.0	22
104	Measurement and correlation of phase equilibria for ternary systems of waterÂ+Â(ethanol/1-propanol)Â+Â1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at 298.15ÂK. Fluid Phase Equilibria, 2016, 427, 340-344.	1.4	38
105	Liquid–Liquid Equilibrium for the Ternary System Isopropyl Acetate + Ethanol + Water at (293.15, 313.15,) Tj	ETQq1 1 (0.784314 rgB
106	Isobaric Vapor–Liquid Equilibrium for Binary Systems of 2,2,3,3-Tetrafluoro-1-propanol + 2,2,3,3,4,4,5,5-Octafluoro-1-pentanol at 53.3, 66.7, 80.0 kPa. Journal of Chemical & Engineering Data, 2016, 61, 3371-3376.	1.0	34
107	Investigating the stability of gold nanorods modified with thiol molecules for biosensing. RSC Advances, 2016, 6, 174-178.	1.7	3
108	Measurement and correlation of liquid–liquid equilibrium for the ternary system 2,2,3,3,4,4,5,5-octafluoro-1-pentanolÂ+ methanolÂ+Âwater at (298.15, 308.15, and 318.15) K. Fluid Phase Equilibria, 2016, 409, 377-382.	1.4	21

#	Article	IF	CITATIONS
109	Liquid–Liquid Equilibrium for the Ternary System 2,2,3,3,4,4,5,5-Octafluoro-1-pentanol + Ethanol + Water at (298.15, 308.15, and 318.15) K. Journal of Chemical & Engineering Data, 2015, 60, 2733-2738.	1.0	23
110	Liquid–liquid equilibrium for the ternary systems water+2-methyl-1-propanol+butyl acetate and water+2-methyl-2-propanol+butyl acetate at (298.15 and 323.15)K. Fluid Phase Equilibria, 2014, 381, 60-66.	1.4	25
111	One-Step Synthesis of High-Silica ZSM-5 Zeolite with Less Internal Silicon Hydroxyl Groups: Highly Stable Catalyst for Methanol to Propene Reaction. Catalysis Letters, 0, , 1.	1.4	1
112	Measurement and Thermodynamic Modeling of Liquid–Liquid Equilibrium Data for Ternary Systems (Water + Formaldehyde + Methyl Isobutyl Ketone/Cyclohexanone) at Different Temperatures. Journal of Chemical & Engineering Data, 0, , .	1.0	0