List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5157192/publications.pdf Version: 2024-02-01

		8159	7333
208	24,277	76	152
papers	citations	h-index	g-index
211	211	211	23948
all docs	docs citations	times ranked	citing authors

ΧιλΝιτίο Ητι

#	Article	IF	CITATIONS
1	Nitrogenâ€Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Advanced Materials, 2012, 24, 2047-2050.	11.1	1,541
2	Development and challenges of LiFePO ₄ cathode material for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 269-284.	15.6	1,058
3	Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2497.	15.6	1,053
4	Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature Communications, 2015, 6, 6929.	5.8	969
5	Reconstruction of Conformal Nanoscale MnO on Graphene as a Highâ€Capacity and Longâ€Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 2436-2444.	7.8	770
6	MOFâ€Đerived Porous ZnO/ZnFe ₂ O ₄ /C Octahedra with Hollow Interiors for Highâ€Rate Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6622-6628.	11.1	703
7	Self-Assembled Hierarchical MoO ₂ /Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano, 2011, 5, 7100-7107.	7.3	611
8	αâ€Fe ₂ O ₃ Nanorings Prepared by a Microwaveâ€Assisted Hydrothermal Process and Their Sensing Properties. Advanced Materials, 2007, 19, 2324-2329.	11.1	602
9	Nanostructured Mo-based electrode materials for electrochemical energy storage. Chemical Society Reviews, 2015, 44, 2376-2404.	18.7	599
10	Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon, 2013, 55, 328-334.	5.4	589
11	Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids. Angewandte Chemie - International Edition, 2004, 43, 1410-1414.	7.2	508
12	Flexible Asymmetric Micro‣upercapacitors Based on Bi ₂ O ₃ and MnO ₂ Nanoflowers: Larger Areal Mass Promises Higher Energy Density. Advanced Energy Materials, 2015, 5, 1401882.	10.2	479
13	Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir, 2010, 26, 3031-3039.	1.6	464
14	Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 8916.	6.7	328
15	Constructing Hierarchical Tectorumâ€like αâ€Fe ₂ O ₃ /PPy Nanoarrays on Carbon Cloth for Solidâ€State Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2017, 56, 1105-1110.	7.2	317
16	β-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets. Journal of Physical Chemistry B, 2004, 108, 3488-3491.	1.2	305
17	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Letters, 2015, 15, 3899-3906.	4.5	296
18	Flexible, Highâ€Wettability and Fireâ€Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1703548.	11.1	272

XIANLUO HU

#	Article	IF	CITATIONS
19	Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Materials Chemistry and Physics, 2004, 88, 421-426.	2.0	259
20	Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries. Scientific Reports, 2015, 5, 9254.	1.6	255
21	Sodium storage in Na-rich Na x FeFe(CN) 6 nanocubes. Nano Energy, 2015, 12, 386-393.	8.2	253
22	Continuous Aspectâ€Ratio Tuning and Fine Shape Control of Monodisperse <i>α</i> â€Fe ₂ O ₃ Nanocrystals by a Programmed Microwave–Hydrothermal Method. Advanced Functional Materials, 2008, 18, 880-887.	7.8	246
23	Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2870.	15.6	245
24	Efficient Removal of Heavy Metal lons from Aqueous Systems with the Assembly of Anisotropic Layered Double Hydroxide Nanocrystals@Carbon Nanosphere. Environmental Science & Technology, 2011, 45, 6181-6187.	4.6	243
25	Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwaveâ€Polyol Process and Their Application for Humidity Sensing. Advanced Materials, 2008, 20, 4845-4850.	11.1	242
26	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	10.2	226
27	Stripping Voltammetric Detection of Mercury(II) Based on a Bimetallic Auâ^'Pt Inorganicâ^'Organic Hybrid Nanocomposite Modified Glassy Carbon Electrode. Analytical Chemistry, 2010, 82, 567-573.	3.2	213
28	Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. Journal of Physical Chemistry C, 2011, 115, 15703-15709.	1.5	201
29	Flexible Quasiâ€Solidâ€State Sodiumâ€Ion Capacitors Developed Using 2D Metal–Organicâ€Framework Array a Reactor. Advanced Energy Materials, 2018, 8, 1702769.	^{as} 10.2	195
30	Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Research, 2015, 8, 1148-1158.	5.8	188
31	A Green and Facile Way to Prepare Granadillaâ€Like Siliconâ€Based Anode Materials for Liâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 440-446.	7.8	187
32	Flexible and Binderâ€Free Electrodes of Sb/rGO and Na ₃ V ₂ (PO ₄) ₃ /rGO Nanocomposites for Sodiumâ€lon Batteries. Small, 2015, 11, 3822-3829.	5.2	184
33	Ultrafine MoO ₂ nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 425-431.	6.7	175
34	Bi4Ti3O12 nanofibers–BiOI nanosheets p–n junction: facile synthesis and enhanced visible-light photocatalytic activity. Nanoscale, 2013, 5, 9764.	2.8	174
35	Conformal Conducting Polymer Shells on V ₂ O ₅ Nanosheet Arrays as a Highâ€Rate and Stable Zincâ€lon Battery Cathode. Advanced Materials Interfaces, 2019, 6, 1801506. 	1.9	170
36	Highly porous Li 4 Ti 5 O 12 /C nanofibers for ultrafast electrochemical energy storage. Nano Energy, 2014, 10, 163-171.	8.2	165

#	Article	IF	CITATIONS
37	Controlled Synthesis of Mesoporous MnO/C Networks by Microwave Irradiation and Their Enhanced Lithium-Storage Properties. ACS Applied Materials & Interfaces, 2013, 5, 1997-2003.	4.0	162
38	Assembly of NiO/Ni(OH) ₂ /PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 1774-1779.	4.0	157
39	Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 20794-20799.	1.5	154
40	Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. Journal of Materials Chemistry, 2012, 22, 19190.	6.7	150
41	Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy, 2013, 2, 412-418.	8.2	145
42	Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nanoscale, 2013, 5, 2028.	2.8	143
43	Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries. Nano Energy, 2015, 16, 479-487.	8.2	141
44	Fast Production of Self-Assembled Hierarchical α-Fe ₂ O ₃ Nanoarchitectures. Journal of Physical Chemistry C, 2007, 111, 11180-11185.	1.5	140
45	Photochromism of WO3 Colloids Combined with TiO2 Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 12670-12676.	1.2	138
46	High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014, 5, 97-104.	8.2	138
47	SiO ₂ â€Enhanced Structural Stability and Strong Adhesion with a New Binder of Konjac Glucomannan Enables Stable Cycling of Silicon Anodes for Lithiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1800434.	10.2	135
48	Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 24026.	6.7	134
49	Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 4229.	1.6	131
50	Nanostructured Ti-based anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 12001-12013.	5.2	129
51	Layer-by-layer assembled MoO2–graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Nanoscale, 2012, 4, 4707.	2.8	127
52	A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale, 2013, 5, 3298.	2.8	125
53	Rapid Mass Production of Hierarchically Porous ZnIn2S4Submicrospheres via a Microwave-Solvothermal Process. Crystal Growth and Design, 2007, 7, 2444-2448.	1.4	122
54	Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 13826.	6.7	119

#	Article	IF	CITATIONS
55	An ordered cubic Im3m mesoporous Cr–TiO2visible light photocatalyst. Chemical Communications, 2006, , 2717-2719.	2.2	117
56	Synthesis of hierarchical MoS ₂ and its electrochemical performance as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3498-3504.	5.2	117
57	Effect of Vanadium Incorporation on Electrochemical Performance of LiFePO ₄ for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 13520-13527.	1.5	114
58	Ultrahigh apacity and Fireâ€Resistant LiFePO ₄ â€Based Composite Cathodes for Advanced Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1802930.	10.2	114
59	Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Physical Chemistry Chemical Physics, 2011, 13, 16735.	1.3	113
60	Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10375.	5.2	113
61	Mesoporeâ€Induced Ultrafast Na ⁺ â€&torage in Tâ€Nb ₂ O ₅ /Carbon Nanofiber Films toward Flexible Highâ€Power Naâ€Ion Capacitors. Small, 2019, 15, e1804539.	5.2	109
62	Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage. Chemistry - an Asian Journal, 2018, 13, 1518-1529.	1.7	108
63	Electrospun sillenite Bi12MO20 (M = Ti, Ge, Si) nanofibers: general synthesis, band structure, and photocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 20698.	1.3	106
64	Thermoregulating Separators Based on Phaseâ€Change Materials for Safe Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2008088.	11.1	106
65	Safer Lithiumâ€lon Batteries from the Separator Aspect: Development and Future Perspectives. Energy and Environmental Materials, 2021, 4, 336-362.	7.3	104
66	Metal–Organic Framework Derived ZnO/ZnFe ₂ O ₄ /C Nanocages as Stable Cathode Material for Reversible Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2015, 7, 4947-4954.	4.0	103
67	Morphology Control of PbWO4 Nano- and Microcrystals via a Simple, Seedless, and High-Yield Wet Chemical Route. Langmuir, 2004, 20, 1521-1523.	1.6	98
68	In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and Ultrafast Sodium Storage. Advanced Materials, 2017, 29, 1604708.	11.1	95
69	High-Yield Synthesis of Nickel and Nickel Phosphide Nanowires via Microwave-Assisted Processes. Chemistry of Materials, 2008, 20, 6743-6749.	3.2	93
70	Facile synthesis of sandwiched Zn ₂ GeO ₄ –graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Nanoscale, 2014, 6, 924-930.	2.8	90
71	Urchin-Like Ni _{1/3} Co _{2/3} (CO ₃) _{1/2} (OH)·0.11H ₂ O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow. ACS	4.0	84
72	Microwaveâ€Induced Inâ€Situ Synthesis of Zn ₂ GeO ₄ /Nâ€Doped Graphene Nanocomposites and Their Lithium torage Properties. Chemistry - A European Journal, 2013, 19, 6027-6033.	1.7	83

#	Article	IF	CITATIONS
73	Highly Tough, Liâ€Metal Compatible Organic–Inorganic Doubleâ€Network Solvate Ionogel. Advanced Energy Materials, 2019, 9, 1900257.	10.2	82
74	Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-Storage and robust flexibility for sodium-ion hybrid capacitors. Energy Storage Materials, 2020, 28, 91-100.	9.5	82
75	Constructing Hierarchical Tectorumâ€like αâ€Fe ₂ O ₃ /PPy Nanoarrays on Carbon Cloth for Solidâ€State Asymmetric Supercapacitors. Angewandte Chemie, 2017, 129, 1125-1130.	1.6	81
76	Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon, 2014, 69, 302-310.	5.4	79
77	Si-containing precursors for Si-based anode materials of Li-ion batteries: A review. Energy Storage Materials, 2016, 4, 92-102.	9.5	79
78	Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochimica Acta, 2011, 56, 2689-2695.	2.6	77
79	Generalized Low-Temperature Synthesis of Nanocrystalline Rare-Earth Orthoferrites LnFeO ₃ (Ln = La, Pr, Nd, Sm, Eu, Gd). Crystal Growth and Design, 2008, 8, 2061-2065.	1.4	74
80	Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. Journal of Alloys and Compounds, 2014, 586, 208-215.	2.8	74
81	Enhanced electrochemical performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 by nanoscale surface modification with Co 3 O 4. Electrochimica Acta, 2017, 231, 294-299.	2.6	74
82	Thermotolerant separators for safe lithium-ion batteries under extreme conditions. Journal of Materials Chemistry A, 2020, 8, 20294-20317.	5.2	71
83	Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium–ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 2954.	1.3	70
84	Mo ₂ C-induced solid-phase synthesis of ultrathin MoS ₂ nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 14742-14751.	5.2	69
85	Synthesis and Characterization of Core-Shell Selenium/Carbon Colloids and Hollow Carbon Capsules. Chemistry - A European Journal, 2006, 12, 548-552.	1.7	66
86	A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochemistry Communications, 2016, 70, 8-12.	2.3	66
87	Self-Assembling Hollow Carbon Nanobeads into Double-Shell Microspheres as a Hierarchical Sulfur Host for Sustainable Room-Temperature Sodium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 20422-20428.	4.0	65
88	Symmetric Electrodes for Electrochemical Energy torage Devices. Advanced Science, 2016, 3, 1600115.	5.6	64
89	Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers. Energy Storage Materials, 2020, 27, 270-278.	9.5	64
90	VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors. Scientific Reports, 2015, 5, 16012.	1.6	63

#	Article	IF	CITATIONS
91	Facile fabrication of porous Cr-doped SrTiO ₃ nanotubes by electrospinning and their enhanced visible-light-driven photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 3935-3943.	5.2	62
92	Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 4910.	6.7	60
93	Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process. Electrochimica Acta, 2012, 63, 118-123.	2.6	60
94	Ultrafast Na+-storage in TiO2-coated MoS2@N-doped carbon for high-energy sodium-ion hybrid capacitors. Energy Storage Materials, 2019, 23, 95-104.	9.5	59
95	Holey Graphene for Electrochemical Energy Storage. Cell Reports Physical Science, 2020, 1, 100215.	2.8	58
96	Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres. Talanta, 2012, 101, 45-52.	2.9	57
97	Controlled Hydrothermal Synthesis and Growth Mechanism of Various Nanostructured Films of Copper and Silver Tellurides. Chemistry - A European Journal, 2006, 12, 4185-4190.	1.7	55
98	Microwave-polyol Preparation of Single-crystalline Gold Nanorods and Nanowires. Chemistry Letters, 2003, 32, 1140-1141.	0.7	53
99	TiO ₂ –B Nanosheets/Anatase Nanocrystals Coâ€Anchored on Nanoporous Graphene: In Situ Reduction–Hydrolysis Synthesis and Their Superior Rate Performance as an Anode Material. Chemistry - A European Journal, 2014, 20, 1383-1388.	1.7	53
100	Microwaveâ€Assisted Rapid Synthesis of Selfâ€Assembled Tâ€Nb ₂ O ₅ Nanowires for Highâ€Energy Hybrid Supercapacitors. Chemistry - A European Journal, 2017, 23, 4203-4209.	1.7	53
101	Synthesis of Amorphous FeOOH/Reduced Graphene Oxide Composite by Infrared Irradiation and Its Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2013, 5, 10145-10150.	4.0	52
102	Topâ€Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithiumâ€Ion Batteries: Mechanical Milling and Etching. ChemSusChem, 2020, 13, 1923-1946.	3.6	52
103	Fabricating strongly coupled V2O5@PEDOT nanobelts/graphene hybrid films with high areal capacitance and facile transferability for transparent solid-state supercapacitors. Energy Storage Materials, 2020, 27, 150-158.	9.5	52
104	Microwave-assisted synthesis and in-situ self-assembly of coaxial Ag/C nanocables. Chemical Communications, 2005, , 2704.	2.2	50
105	Hierarchical self-assembly of Mn2Mo3O8–graphene nanostructures and their enhanced lithium-storage properties. Journal of Materials Chemistry, 2011, 21, 17229.	6.7	50
106	Bismuth oxyiodide nanosheets: a novel high-energy anode material for lithium-ion batteries. Chemical Communications, 2015, 51, 2798-2801.	2.2	50
107	Constructing Three-Dimensional Honeycombed Graphene/Silicon Skeletons for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 31879-31886.	4.0	50
108	Architectural design and phase engineering of N/B-codoped TiO ₂ (B)/anatase nanotube assemblies for high-rate and long-life lithium storage. Journal of Materials Chemistry A, 2015, 3, 22591-22598.	5.2	49

#	Article	IF	CITATIONS
109	Binding TiO ₂ -B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8172-8179.	5.2	47
110	Improved Electrochemical Performance in Li3V2(PO4)3 Promoted by Niobium-Incorporation. Journal of the Electrochemical Society, 2011, 158, A924.	1.3	46
111	Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Materials Letters, 2004, 58, 1234-1236.	1.3	45
112	One-step synthesis of a silicon/hematite@carbon hybrid nanosheet/silicon sandwich-like composite as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4056-4061.	5.2	45
113	By what means should nanoscaled materials be constructed: molecule, medium, or human?. Nanoscale, 2010, 2, 198-214.	2.8	44
114	SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1431-1434.	2.3	44
115	Electrospun Conformal Li ₄ Ti ₅ O ₁₂ /C Fibers for Highâ€Rate Lithiumâ€lon Batteries. ChemElectroChem, 2014, 1, 611-616.	1.7	43
116	Morphosynthesis of 3D Macroporous Garnet Frameworks and Perfusion of Polymerâ€Stabilized Lithium Salts for Flexible Solidâ€State Hybrid Electrolytes. Advanced Materials Interfaces, 2019, 6, 1900200.	1.9	43
117	Facile synthesis of mesoporous 0.4Li2MnO3·0.6LiNi2/3Mn1/3O2 foams with superior performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 14964.	6.7	42
118	Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries. Applied Surface Science, 2019, 479, 287-295.	3.1	42
119	A "Trojan Horse―Camouflage Strategy for Highâ€Performance Cellulose Paper and Separators. Advanced Functional Materials, 2020, 30, 2002169.	7.8	42
120	Architectural Engineering Achieves Highâ€Performance Alloying Anodes for Lithium and Sodium Ion Batteries. Small, 2021, 17, e2005248.	5.2	42
121	Poly(vinylpyrrolidone): a new reductant for preparation of tellurium nanorods, nanowires, and tubes from TeO2. Nanotechnology, 2006, 17, 645-650.	1.3	41
122	Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries. Energy Storage Materials, 2022, 47, 445-452.	9.5	41
123	Ionogelâ€Based Membranes for Safe Lithium/Sodium Batteries. Advanced Materials, 2022, 34, e2200945.	11.1	41
124	High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. Journal of Alloys and Compounds, 2012, 513, 414-419.	2.8	40
125	Self-assembly of hybrid Fe2Mo3O8–reduced graphene oxide nanosheets with enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 4468.	5.2	40
126	Electrospun porous LiNb3O8 nanofibers with enhanced lithium-storage properties. Journal of Materials Chemistry A, 2013, 1, 15053.	5.2	39

XIANLUO HU

#	Article	IF	CITATIONS
127	Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie - International Edition, 2017, 56, 13790-13794.	7.2	39
128	Monolithic Taskâ€Specific Ionogel Electrolyte Membrane Enables Highâ€Performance Solidâ€State Lithiumâ€Metal Batteries in Wide Temperature Range. Advanced Functional Materials, 2022, 32, .	7.8	38
129	Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation. Science China Materials, 2021, 64, 1609-1620.	3.5	37
130	Microwave-Assisted Synthesis of a Superparamagnetic Surface-Functionalized Porous Fe3O4/C Nanocomposite. Chemistry - an Asian Journal, 2006, 1, 605-610.	1.7	36
131	Nanoengineering S-Doped TiO ₂ Embedded Carbon Nanosheets for Pseudocapacitance-Enhanced Li-Ion Capacitors. ACS Applied Energy Materials, 2018, 1, 1708-1715.	2.5	34
132	Thermally Durable Lithiumâ€lon Capacitors with High Energy Density from All Hydroxyapatite Nanowireâ€Enabled Fireâ€Resistant Electrodes and Separators. Advanced Energy Materials, 2019, 9, 1902497.	10.2	34
133	Sol–gel nanocasting synthesis of patterned hierarchical LaFeO3 fibers with enhanced catalytic CO oxidation activity. Nanoscale, 2011, 3, 974.	2.8	33
134	Unitized Configuration Design of Thermally Stable Composite Polymer Electrolyte for Lithium Batteries Capable of Working Over a Wide Range of Temperatures. Advanced Engineering Materials, 2019, 21, 1900055.	1.6	33
135	Microwave-assisted polythiol reduction method: a new solid–liquid route to fast preparation of silver nanowires. Materials Letters, 2004, 58, 1517-1519.	1.3	31
136	Chitosan Nanostructures with Controllable Morphology Produced by a Nonaqueous Electrochemical Approach. Advanced Materials, 2008, 20, 2111-2115.	11.1	31
137	Self-Assembled Chitosan Nanotemplates for Biomineralization of Controlled Calcite Nanoarchitectures. ACS Applied Materials & Interfaces, 2009, 1, 26-29.	4.0	31
138	Controlled synthesis of monodispersed hematite microcubes and their properties. CrystEngComm, 2011, 13, 7114.	1.3	31
139	Rational Design of Threeâ€Dimensional Hierarchical Nanomaterials for Asymmetric Supercapacitors. ChemElectroChem, 2017, 4, 2428-2441.	1.7	31
140	Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly. Analytica Chimica Acta, 2013, 785, 34-42.	2.6	30
141	A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12073-12079.	5.2	30
142	Tandem MoP nanocrystals with rich grain boundaries for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2018, 54, 2502-2505.	2.2	30
143	Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	29
144	A sulfurization-based oligomeric sodium salt as a high-performance organic anode for sodium ion batteries. Chemical Communications, 2016, 52, 11207-11210.	2.2	29

#	Article	IF	CITATIONS
145	Paragenesis of Mo2C nanocrystals in mesoporous carbon nanofibers for electrocatalytic hydrogen evolution. Electrochimica Acta, 2018, 274, 23-30.	2.6	29
146	Surface modification of MoOxSy on porous TiO2 nanospheres as an anode material with highly reversible and ultra-fast lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 15128.	5.2	28
147	Ionic-Liquid-Assisted Synthesis of Self-Assembled TiO2-B Nanosheets under Microwave Irradiation and Their Enhanced Lithium Storage Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5320-5328.	1.0	28
148	Porous carbon-coated ball-milled silicon as high-performance anodes for lithium-ion batteries. Journal of Materials Science, 2019, 54, 4798-4810.	1.7	28
149	Biomaterial-assisted synthesis of AgCl@Ag concave cubes with efficient visible-light-driven photocatalytic activity. CrystEngComm, 2014, 16, 649-653.	1.3	27
150	Precisely Tunable T-Nb ₂ O ₅ Nanotubes via Atomic Layer Deposition for Fast-Charging Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16445-16453.	4.0	27
151	Tellurium Nanorods and Nanowires Prepared by the Microwave-Polyol Method. Chemistry Letters, 2004, 33, 760-761.	0.7	26
152	WO3/TiO2 microstructures for enhanced photocatalytic oxidation. Separation and Purification Technology, 2012, 91, 67-72.	3.9	26
153	Functional Inks for Printable Energy Storage Applications based on 2 D Materials. ChemSusChem, 2020, 13, 1330-1353.	3.6	25
154	A mesoporous TiO2â^'xNx photocatalyst prepared by sonication pretreatment and in situ pyrolysis. Separation and Purification Technology, 2009, 67, 152-157.	3.9	24
155	Large-scale synthesis of WOx–EDA nanobelts and their application as photoswitches. CrystEngComm, 2011, 13, 2237.	1.3	24
156	A high-energy sodium-ion capacitor enabled by a nitrogen/sulfur co-doped hollow carbon nanofiber anode and an activated carbon cathode. Nanoscale Advances, 2019, 1, 746-756.	2.2	24
157	Interface Engineering to Boost Thermal Safety of Microsized Silicon Anodes in Lithiumâ€lon Batteries. Small Methods, 2022, 6, .	4.6	24
158	Fast microwave-assisted synthesis of Nb-doped Li4Ti5O12 for high-rate lithium-ion batteries. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	23
159	Fabrication of Core–Sheath NiCoP@FeP _{<i>x</i>} Nanoarrays for Efficient Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8847-8855.	3.2	23
160	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	2.4	23
161	Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell. Scientific Reports, 2013, 3, 1125.	1.6	22
162	Self-assembled 3D hierarchical sheaf-like Nb3O7(OH) nanostructures with enhanced photocatalytic activity. Nanoscale, 2015, 7, 1963-1969.	2.8	22

#	Article	IF	CITATIONS
163	Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties. Nanoscale, 2016, 8, 12215-12220.	2.8	22
164	Yolk-shell Si/SiO _{<i>x</i>} @Void@C composites as anode materials for lithium-ion batteries. Functional Materials Letters, 2019, 12, 1850094.	0.7	22
165	Thermoelectric Solid-Oxide Fuel Cells with Extra Power Conversion from Waste Heat. Chemistry of Materials, 2012, 24, 1401-1403.	3.2	21
166	Electrochemically Controlled Reversible Lithium Capture and Release Enabled by LiMn ₂ O ₄ Nanorods. ChemElectroChem, 2020, 7, 105-111.	1.7	21
167	A Facile Surface-Etching Route to Thin Films of Metal Iodides. Crystal Growth and Design, 2007, 7, 262-267.	1.4	20
168	Direct planting of ultrafine MoO _{2+δ} nanoparticles in carbon nanofibers by electrospinning: self-supported mats as binder-free and long-life anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 19832-19837.	1.3	20
169	A low-cost non-conjugated dicarboxylate coupled with reduced graphene oxide for stable sodium-organic batteries. Journal of Power Sources, 2018, 398, 99-105.	4.0	20
170	Synthesis of surface-functionalized t-Se microspheres via a green wet-chemical route. Journal of Materials Chemistry, 2006, 16, 748-751.	6.7	19
171	Conformal spinel/layered heterostructures of Co3O4 shells grown on single-crystal Li-rich nanoplates for high-performance lithium-ion batteries. Applied Surface Science, 2018, 447, 829-836.	3.1	19
172	Stabilizing Li-rich layered cathode materials by nanolayer-confined crystal growth for Li-ion batteries. Electrochimica Acta, 2020, 333, 135466.	2.6	19
173	Synthesis and assembly of zinc hydroxide sulfate large flakes: Application in gas sensor based on a novel surface mount technology. Sensors and Actuators B: Chemical, 2010, 147, 495-501.	4.0	18
174	Facile synthesis of porous InNbO4 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Journal of Alloys and Compounds, 2014, 592, 301-305.	2.8	18
175	Single-crystalline PbCrO4Nanowires and Their Hydrothermal Transformation to Amorphous PbCr3O10Nanotubes. Chemistry Letters, 2004, 33, 880-881.	0.7	17
176	Microwave-polythiol Method. A New Route to Preparation of Tellurium with Various Morphologies. Chemistry Letters, 2003, 32, 732-733.	0.7	15
177	Morphology-controllable solvothermal synthesis of nanoscale LiFePO4 in a binary solvent. Science Bulletin, 2012, 57, 4170-4175.	1.7	15
178	Facile Decoring Route to Carbon Nano Test Tubes. Journal of Physical Chemistry C, 2007, 111, 5830-5834.	1.5	14
179	Large-scale synthesis of Ag1.8Mn8O16 nanorods and their electrochemical lithium-storage properties. Journal of Nanoparticle Research, 2011, 13, 3139-3148.	0.8	14
180	Phase control of TiO 2 nanobelts by microwave irradiation as anode materials with tunable Li-diffusion kinetics. Materials Research Bulletin, 2017, 96, 365-371.	2.7	14

XIANLUO HU

#	Article	IF	CITATIONS
181	<i>In situ</i> growth of copper rhodizonate complexes on reduced graphene oxide for high-performance organic lithium-ion batteries. Chemical Communications, 2018, 54, 11415-11418.	2.2	14
182	Transparent Electrodes for Energy Storage Devices. Batteries and Supercaps, 2020, 3, 1275-1286.	2.4	14
183	Microwave-assisted synthesis of self-assembled BiO1.84H0.08 hierarchical nanostructures as a new photocatalyst. Applied Surface Science, 2014, 319, 244-249.	3.1	13
184	Collaborative compromise of two-dimensional materials in sodium ion capacitors: mechanisms and designing strategies. Journal of Materials Chemistry A, 2021, 9, 8129-8159.	5.2	13
185	Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	12
186	Synergy of Highly Reversible ω-Li ₃ V ₂ O ₅ Anodes and Fluorine-Containing Additive Electrolytes Promises Low-Temperature-Tolerant Li-Ion Batteries. , 2021, 3, 1394-1401.		12
187	Fabricating a Flow-Through Hybrid Capacitive Deionization Cell for Selective Recovery of Lithium Ions. ACS Applied Energy Materials, 2021, 4, 13036-13043.	2.5	12
188	Scalable Synthesis of Fe/Nâ€Đoped Porous Carbon Nanotube Frameworks for Aqueous Zn–Air Batteries. Chemistry - A European Journal, 2019, 25, 635-641.	1.7	11
189	Lithium-ion insertion kinetics of Na-doped Li2TiSiO5 as anode materials for lithium-ion batteries. Journal of Materials Science and Technology, 2020, 57, 18-25.	5.6	11
190	Pseudocapacitance: Emergent Pseudocapacitance of 2D Nanomaterials (Adv. Energy Mater. 13/2018). Advanced Energy Materials, 2018, 8, 1870058.	10.2	10
191	Boosting lithium batteries under harsh operating conditions by a resilient ionogel with liquid-like ionic conductivity. Journal of Energy Chemistry, 2021, 62, 408-414.	7.1	10
192	Rapid microwave synthesis of carbon-bridged Nb ₂ O ₅ mesocrystals for high-energy and high-power sodium-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 11470-11476.	5.2	10
193	Carcinoid tumor of the common bile duct in children: a case report. Journal of Pediatric Surgery, 2010, 45, 2061-2063.	0.8	9
194	Novel nanofibrous composite of chitosan–CaCO3fabricated by electrolytic biomineralization and its cell biocompatibility. RSC Advances, 2012, 2, 514-519.	1.7	9
195	Mo-catalysis-assisted expeditious synthesis of N-doped erythrocyte-like hollow porous carbons for sodium storage. Carbon, 2019, 143, 240-246.	5.4	9
196	Highly efficient H-bonding charge-transfer complex for microsupercapacitors under extreme conditions of low temperatures. Journal of Energy Chemistry, 2020, 51, 182-189.	7.1	9
197	In-situ grown Li-Ti-O layer derived by atomic layer deposition to improve the Li storage performance of Li2TiSiO5 anode materials. Electrochimica Acta, 2020, 344, 136149.	2.6	9
198	Photothermal supercapacitors at â^'40°C based on bifunctional TiN electrodes. Chemical Engineering Journal, 2021, 423, 130162.	6.6	9

#	Article	IF	CITATIONS
199	Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie, 2017, 129, 13978-13982.	1.6	8
200	Solar-assisted lithium metal recovery from spent lithium iron phosphate batteries. Chemical Engineering Journal Advances, 2021, 8, 100163.	2.4	6
201	Insight into effects of niobium on electrospun Li2TiSiO5 fibers as anode materials in lithium-ion batteries. Materials Research Bulletin, 2021, 136, 111145.	2.7	5
202	Fabrication of SiO2 nanofiber-integrated all-inorganic electrodes for safer Li-ion batteries. Functional Materials Letters, 0, , .	0.7	3
203	Lithiumâ€Ion Batteries: A Green and Facile Way to Prepare Granadillaâ€Like Siliconâ€Based Anode Materials for Liâ€Ion Batteries (Adv. Funct. Mater. 3/2016). Advanced Functional Materials, 2016, 26, 468-468.	7.8	2
204	Bi-functional Janus all-nanomat separators for acid scavenging and manganese ions trapping in LiMn2O4 lithium-ion batteries. Materials Today Physics, 2022, 24, 100676.	2.9	2
205	Electrospun poly(ionic liquid) nanofiber separators with high lithium-ion transference number for safe ionic-liquid-based lithium batteries in wide temperature range. Materials Today Physics, 2022, 25, 100716.	2.9	2
206	Porous Sr2CuWO6 Nanoarchitectures Fabricated by a Matrix-mediated Route. Chemistry Letters, 2009, 38, 320-321.	0.7	0
207	Preparation of Dy-ferrite Ferrofluids and Magnetochemical Studies on the Superparamagnetism. Chinese Journal of Chemistry, 2010, 19, 733-737.	2.6	0
208	One-Step Preparation of Ag-Loaded Bi4Ti3O12 Nanofibers By Electrospinning and Their Photocatalytic Activity. ECS Meeting Abstracts, 2013, , .	0.0	0