List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5157085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A closed and zero-waste loop strategy to recycle the main raw materials (gold, copper and fiber glass) Tj ETQq1	1 0,78431	4 rgBT /Over 14
2	Modulation of Siderophore Production by Pseudomonas fluorescens Through the Manipulation of the Culture Medium Composition. Applied Biochemistry and Biotechnology, 2021, 193, 607-618.	1.4	12
3	Harmful effects of metal(loid) oxide nanoparticles. Applied Microbiology and Biotechnology, 2021, 105, 1379-1394.	1.7	27
4	Microwave-assisted organic swelling promotes fast and efficient delamination of waste printed circuit boards. Waste Management, 2021, 126, 231-238.	3.7	10
5	Simple and near-zero-waste processing for recycling gold at a high purity level from waste printed circuit boards. Waste Management, 2021, 135, 90-97.	3.7	13
6	A simple, efficient and selective process for recycling La (and Al) from fluid cracking catalysts using an environmentally friendly strategy. Minerals Engineering, 2020, 156, 106375.	1.8	7
7	A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries. Waste Management, 2020, 113, 342-350.	3.7	23
8	Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max). Science of the Total Environment, 2019, 647, 1586-1593.	3.9	23
9	An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries. Journal of Cleaner Production, 2019, 236, 117612.	4.6	18
10	Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express, 2019, 9, 78.	1.4	84
11	Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. Aquatic Toxicology, 2019, 214, 105265.	1.9	17
12	Nickel Oxide Nanoparticles Trigger Caspase- and Mitochondria-Dependent Apoptosis in the Yeast <i>Saccharomyces cerevisiae</i> . Chemical Research in Toxicology, 2019, 32, 245-254.	1.7	9
13	Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of the Total Environment, 2019, 682, 779-799.	3.9	146
14	Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review. Critical Reviews in Environmental Science and Technology, 2019, 49, 212-275.	6.6	219
15	Evaluation of two-step processes for the selective recovery of Mn from a rich Mn residue. Minerals Engineering, 2019, 130, 148-155.	1.8	18
16	Nickel oxide (NiO) nanoparticles disturb physiology and induce cell death in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2018, 102, 2827-2838.	1.7	18
17	Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata. Aquatic Toxicology, 2018, 204, 80-90.	1.9	38
18	Relation between different metal pollution criteria in sediments and its contribution on assessing toxicity. Chemosphere, 2018, 208, 390-398.	4.2	13

#	Article	IF	CITATIONS
19	Nickel Oxide (NiO) Nanoparticles Induce Loss of Cell Viability in Yeast Mediated by Oxidative Stress. Chemical Research in Toxicology, 2018, 31, 658-665.	1.7	26
20	Sequential separation of Ag, Al, Cu and Pb from a multi-metal leached solution using a zero waste technology. Separation Science and Technology, 2018, 53, 2961-2970.	1.3	4
21	N,N′-Dihydroxy-N,N′-diisopropylhexanediamide, a siderophore analogue, as a possible iron chelating agent for hydroponic conditions: metal equilibrium studies. Journal of the Iranian Chemical Society, 2017, 14, 1079-1088.	1.2	4
22	A multi-metal risk assessment strategy for natural freshwater ecosystems based on the additive inhibitory free metal ion concentration index. Environmental Pollution, 2017, 223, 517-523.	3.7	7
23	Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches. Waste Management, 2017, 60, 696-705.	3.7	43
24	Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review. Talanta, 2017, 175, 53-68.	2.9	38
25	A simple and nearly-closed cycle process for recycling copper with high purity from end life printed circuit boards. Separation and Purification Technology, 2016, 164, 19-27.	3.9	38
26	Graphic data analysis and complex formation curves as modeling and optimization tools for characterization of Cu–(buffer)x–(OH)y systems involving BTP or BES in aqueous solution. Journal of Coordination Chemistry, 2015, 68, 777-793.	0.8	3
27	(Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Advances, 2015, 5, 30989-31003.	1.7	249
28	Recovery of metals from an acid leachate of spent hydrodesulphurization catalyst using molecular recognition technology. Chemical Engineering Science, 2015, 138, 353-362.	1.9	15
29	Pre-treatment of the paper pulp in the bleaching process using biodegradable chelating agents. International Journal of Environmental Science and Technology, 2015, 12, 975-982.	1.8	10
30	Separation and recovery of nickel, as a salt, from an EDTA leachate of spent hydrodesulphurization catalyst using precipitation methods. Chemical Engineering Science, 2015, 122, 130-137.	1.9	26
31	Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review. Environmental Science and Pollution Research, 2014, 21, 11893-11906.	2.7	147
32	Siderophore Production by Bacillus megaterium: Effect of Growth Phase and Cultural Conditions. Applied Biochemistry and Biotechnology, 2014, 172, 549-560.	1.4	51
33	Aqueous complexation studies of lead(II) and cadmium(II) with 1,3-bis(tris(hydroxymethyl)methylamino)propane pH buffer. Journal of Coordination Chemistry, 2014, 67, 3354-3370.	0.8	3
34	Alternative chelating agents: Evaluation of the ready biodegradability and complexation properties. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 344-354.	0.9	7
35	Simultaneous Anodic Stripping Voltammetric Determination of Pb and Cd, Using a Vibrating Gold Microwire Electrode, Assisted by Chemometric Techniques. Electroanalysis, 2013, 25, 1895-1906.	1.5	9
36	Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Applied Microbiology and Biotechnology, 2013, 97, 6667-6675.	1.7	25

#	Article	IF	CITATIONS
37	Microwave-assisted selective leaching of nickel from spent hydrodesulphurization catalyst: A comparative study between sulphuric and organic acids. Hydrometallurgy, 2013, 140, 20-27.	1.8	39
38	Determination of the stability constants of Pb–(DIPSO)x–(OH)y and Pb–(AMPSO)x–(OH)y systems. Journal of Coordination Chemistry, 2013, 66, 3544-3560.	0.8	2
39	Recovery of molybdates from an alkaline leachate of spent hydrodesulphurisation catalyst – proposal of a nearly-closed process. Journal of Cleaner Production, 2013, 52, 481-487.	4.6	37
40	Modelling and Optimization of Stability Constants of Cadmium or Zinc with Biological Buffers (DIPSO) Tj ETQq0 (42, 1602-1619.	0 rgBT /(0.6	Overlock 10 ⁻ 4
41	Simultaneous Determination of Nickel and Cobalt Using a Solid Bismuth Vibrating Electrode by Adsorptive Cathodic Stripping Voltammetry. Electroanalysis, 2013, 25, 1247-1255.	1.5	38
42	Voltammetric Quantification of Zn and Cu, Together with Hg and Pb, Based on a Gold Microwire Electrode, in a Wider Spectrum of Surface Waters. Electroanalysis, 2013, 25, 493-502.	1.5	17
43	Selective leaching of molybdenum from spent hydrodesulphurisation catalysts using ultrasound and microwave methods. Hydrometallurgy, 2012, 129-130, 19-25.	1.8	64
44	Complexation of 1,3-Bis(tris(hydroxymethyl)methylamino)propane Systems Involving Divalent (Cobalt,) Tj ETQq0 Data, 2012, 57, 87-92.	0 0 rgBT 1.0	Overlock 10 7
45	Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode. Analytica Chimica Acta, 2012, 746, 53-62.	2.6	55
46	Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environmental Science and Pollution Research, 2012, 19, 1066-1083.	2.7	110
47	Ethylenediamine-N,N'-diglutaric acid (EDDG) as a promising biodegradable chelator: Quantification, complexation and biodegradation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 553-559.	0.9	3
48	Cadmium(II), Lead(II), and Zinc(II) Ions Coordination ofN,N′-(S,S)Bis[1-carboxy-2-(imidazol-4yl)ethyl]ethylenediamine: Equilibrium and Structural Studies. Journal of Chemical & Engineering Data, 2011, 56, 398-405.	1.0	4
49	Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Analytica Chimica Acta, 2011, 703, 1-7.	2.6	119
50	Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process. Environmental Science and Pollution Research, 2011, 18, 1279-1285.	2.7	21
51	Simultaneous Determination of Copper(II), Lead(II) and Zinc(II) at Bismuth Film Electrode by Multivariate Calibration. Electroanalysis, 2011, 23, 1410-1417.	1.5	29
52	Recycling of aluminum and caustic soda solution from waste effluents generated during the cleaning of the extruder matrixes of the aluminum industry. Journal of Hazardous Materials, 2011, 187, 459-465.	6.5	11
53	Impact of fluorides on the removal of heavy metals from an electroplating effluent using a flocculent brewer's yeast strain ofSaccharomyces cerevisiae. Chemical Speciation and Bioavailability, 2011, 23, 237-242.	2.0	4
54	Aqueous Equilibrium and Solution Structural Studies ofÂtheÂInteraction ofÂN,N′-bis(4-imidazolymethyl)etylenediamine withÂCa(II), Cd(II), Co(II), Cu(II), Mg(II), Mn(II), Ni(II), Pb(II) and Zn(II) Metal Ions. Journal of Solution Chemistry, 2010, 39, 1153-1167.	0.6	4

#	Article	IF	CITATIONS
55	Removal of Chromium, Copper, and Nickel from an Electroplating Effluent Using a Flocculent Brewer's Yeast Strain of Saccharomyces cerevisiae. Water, Air, and Soil Pollution, 2010, 212, 199-204.	1.1	33
56	Removal of heavy metals using a brewer's yeast strain of <i>Saccharomyces cerevisiae</i> : application to the treatment of real electroplating effluents containing multielements. Journal of Chemical Technology and Biotechnology, 2010, 85, 1353-1360.	1.6	22
57	Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 2010, 180, 347-353.	6.5	86
58	Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents. Journal of Hazardous Materials, 2010, 184, 357-363.	6.5	30
59	Potentiometric and UVâ^'Visible Spectroscopic Studies of Cobalt(II), Copper(II), and Nickel(II) Complexes with <i>N</i> , <i>N</i> @2-(<i>S</i> , <i>S</i>)-Bis[1-carboxy-2-(imidazol-4-yl)ethyl]ethylenediamine. Journal of Chemical & Engineering Data, 2010, 55, 3410-3417.	1.0	3
60	Evaluation of Heavy Metals Pollution Loadings in the Sediments of the Ave River Basin (Portugal). Soil and Sediment Contamination, 2009, 18, 603-618.	1.1	17
61	Complexation Studies of N, N′-ethylenedi-L-cysteine withÂSome Metal Ions. Journal of Solution Chemistry, 2009, 38, 1504-1519.	0.6	3
62	Removal of heavy metals using a brewer's yeast strain of <i>Saccharomyces cerevisiae</i> : advantages of using dead biomass. Journal of Applied Microbiology, 2009, 106, 1792-1804.	1.4	77
63	Complexation of M–(buffer) x –(OH) y Systems Involving Divalent Ions (Cobalt or Nickel) and Zwitterionic Biological Buffers (AMPSO, DIPSO, TAPS and TAPSO) in Aqueous Solution. Journal of Solution Chemistry, 2008, 37, 603-617.	0.6	3
64	Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: The flocculation as a separation process. Bioresource Technology, 2008, 99, 2107-2115.	4.8	102
65	Challenges in modelling and optimisation of stability constants in the study of Cu–(TAPS)x–(OH)y system by polarography. Talanta, 2007, 71, 1352-1363.	2.9	10
66	Modelling of Pb–(TAPS)x–(OH)y system and refinement of stability constants in the region of lead hydrolysis and lead hydroxide precipitation. Talanta, 2007, 71, 1326-1332.	2.9	5
67	Interpretation of non–Nernstian slopes in graphic analysis of data collected in pH range close to deprotonation of a ligandPart I. A glass electrode potentiometric and polarographic study of Cd–(TAPSO)x–(OH)y and Zn–(TAPSO)x–(OH)y systems. Talanta, 2006, 68, 819-830.	2.9	4
68	Complex Formation in the Region of Metal Hydrolysis and M(OH)2 Precipitation. A Glass Electrode Potentiometric and Polarographic Study of Cd–(AMPSO)x–(OH)y and Zn–(AMPSO)x–(OH)y Systems. Electroanalysis, 2006, 18, 719-729.	1.5	8
69	Graphic Data Analysis and Complex Formation Curves as Modelling and Optimization Tools in Potentiometric and Voltammetric Speciation Studies of a Pb(TAPSO)x(OH)y System. Electroanalysis, 2005, 17, 1291-1301.	1.5	3
70	Challenges in modelling and optimisation of stability constants in the study of metal complexes with monoprotonated ligands. Analytica Chimica Acta, 2004, 518, 117-126.	2.6	8
71	Challenges in Modelling and Optimization of Stability Constants in the Study of Metal Complexes with Monoprotonated Ligands. Part II. Helvetica Chimica Acta, 2003, 86, 3288-3304.	1.0	10
72	Challenges in modelling and optimisation of stability constants in the study of metal complexes with monoprotonated ligands. Analytica Chimica Acta, 2003, 493, 105-119.	2.6	17

#	Article	IF	CITATIONS
73	Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Canadian Journal of Microbiology, 2003, 49, 336-343.	0.8	66
74	Viability and release of complexing compounds during accumulation of heavy metals by a brewer's yeast. Applied Microbiology and Biotechnology, 2002, 58, 836-841.	1.7	31
75	Electrochemical Determination of Methyltin Compounds. Mikrochimica Acta, 2002, 138, 43-48.	2.5	0
76	Title is missing!. Biotechnology Letters, 2002, 24, 663-666.	1.1	37
77	Electrochemical Processes of Cadmium, Copper, Lead, and Zinc in the Presence ofN-(2-Hydroxyethyl)piperazine-N â€2-3-Propanesulfonic Acid (HEPPS): Possible Implications in Speciation Studies. Electroanalysis, 2001, 13, 325-331.	1.5	5
78	Electrochemical investigations of the effect of N-substituted aminosulfonic acids with a piperazinic ring pH buffers on heavy metal processes which may have implications on speciation studies. Analytica Chimica Acta, 2000, 421, 103-111.	2.6	31
79	Study of the suitability of 2-(N-morpholino) ethanesulfonic acid pH buffer for heavy metals accumulation studies using <i>Saccharomyces cerevisiae</i> . Chemical Speciation and Bioavailability, 2000, 12, 59-65.	2.0	14
80	Evaluation of n-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques. Analytica Chimica Acta, 1999, 394, 325-335.	2.6	77
81	Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environmental Pollution, 1999, 105, 311-323.	3.7	278
82	Applicability of potentiometric stripping analysis to the speciation of lead–humic acid complexes using potassium permanganate as oxidant. Analyst, The, 1998, 123, 1377-1382.	1.7	13
83	Influence of the ratio copper(II) to ligand concentrations and the nature of entering and leaving ligands on the lability of copper(II) complexes. Analytica Chimica Acta, 1996, 330, 273-281.	2.6	15
84	Toxicity effects of copper (II) on the marine dinoflagellateAmphidinium carterae: Influence of metal speciation. European Journal of Phycology, 1996, 31, 341-348.	0.9	31
85	Potentiometric stripping analysis vs. differential pulse anodic stripping voltammetry for copper(II) analysis at relatively positive deposition potential. Analytica Chimica Acta, 1995, 303, 255-263.	2.6	12
86	Application of potentiometric stripping analysis for speciation of copper complexes with adsorbable ligands on the mercury electrode. Analytica Chimica Acta, 1995, 314, 241-249.	2.6	15
87	Application of potentiometric stripping analysis for speciation of copper complexes with a non-adsorbable ligand on a mercury electrode. Talanta, 1995, 42, 621-626.	2.9	4
88	Study of the lability of copper(II)-fulvic acid complexes by ion selective electrodes and potentiometric stripping analysis. Analytica Chimica Acta, 1994, 293, 261-270.	2.6	24
89	Seasonal variations of heavy metals in sediments and aquatic mosses from the Cávado river basin (Portugal). Science of the Total Environment, 1994, 142, 143-156.	3.9	63
90	Some effects of copper on the dinoflagellatesAmphidinium carteraeandProrocentrum micansin batch culture. European Journal of Phycology, 1994, 29, 253-260.	0.9	35

#	Article	IF	CITATIONS
91	Azotochelin and N-dihydroxy-N,N'-diisopropylhexanediamide as Fe sources to cucumber plants in hydroponic cultures. Emirates Journal of Food and Agriculture, 0, , 65.	1.0	8