
Roberto Pacifici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/515697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estrogen deficiency and bone loss: an inflammatory tale. Journal of Clinical Investigation, 2006, 116, 1186-1194.	3.9	724
2	Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. Journal of Bone and Mineral Research, 1996, 11, 1043-1051.	3.1	623
3	Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α. Journal of Clinical Investigation, 2000, 106, 1229-1237.	3.9	597
4	Marked Decrease in Plasma Antioxidants in Aged Osteoporotic Women: Results of a Cross-Sectional Study. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1523-1527.	1.8	472
5	Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics. Journal of Clinical Investigation, 2016, 126, 2049-2063.	3.9	416
6	IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. Journal of Clinical Investigation, 2007, 117, 122-132.	3.9	385
7	The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity, 2018, 49, 1116-1131.e7.	6.6	288
8	Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-Â-induced class II transactivator. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10405-10410.	3.3	276
9	IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor ÂB ligand and tumor necrosis factor from T cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 125-130.	3.3	273
10	Estrogen Deficiency Increases the Ability of Stromal Cells to Support Murine Osteoclastogenesis via an Interleukin-1and Tumor Necrosis Factor-mediated Stimulation of Macrophage Colony-stimulating Factor Production. Journal of Biological Chemistry, 1996, 271, 28890-28897.	1.6	258
11	Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood, 2000, 96, 1873-1878.	0.6	237
12	The Functional Block of TNF but Not of IL-6 Prevents Bone Loss in Ovariectomized Mice. Journal of Bone and Mineral Research, 1997, 12, 935-941.	3.1	227
13	Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. Journal of Clinical Investigation, 2002, 110, 1643-1650.	3.9	201
14	The gut-bone axis: how bacterial metabolites bridge the distance. Journal of Clinical Investigation, 2019, 129, 3018-3028.	3.9	195
15	T Lymphocytes Amplify the Anabolic Activity of Parathyroid Hormone through Wnt10b Signaling. Cell Metabolism, 2009, 10, 229-240.	7.2	178
16	Editorial: Cytokines, Estrogen, and Postmenopausal Osteoporosis—The Second Decade. Endocrinology, 1998, 139, 2659-2661.	1.4	174
17	The role of T lymphocytes in bone metabolism. Immunological Reviews, 2005, 208, 154-168.	2.8	165
18	Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 768-773.	3.3	165

ROBERTO PACIFICI

#	Article	IF	CITATIONS
19	Estrogen prevents bone loss through transforming growth factor signaling in T cells. Proceedings of the United States of America, 2004, 101, 16618-16623.	3.3	157
20	T Cell Activation Induces Human Osteoclast Formation via Receptor Activator of Nuclear Factor κB Ligand-Dependent and -Independent Mechanisms. Journal of Bone and Mineral Research, 2001, 16, 328-337.	3.1	151
21	Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15087-15092.	3.3	135
22	T Cells Potentiate PTH-Induced Cortical Bone Loss through CD40L Signaling. Cell Metabolism, 2008, 8, 132-145.	7.2	128
23	Role of T cells in ovariectomy induced bone loss—revisited. Journal of Bone and Mineral Research, 2012, 27, 231-239.	3.1	123
24	Estrogen deficiency, T cells and bone loss. Cellular Immunology, 2008, 252, 68-80.	1.4	121
25	An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16735-16740.	3.3	119
26	Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. Journal of Clinical Investigation, 2002, 110, 1643-1650.	3.9	116
27	The immune system and bone. Archives of Biochemistry and Biophysics, 2010, 503, 41-53.	1.4	106
28	Parathyroid hormone–dependent bone formation requires butyrate production by intestinal microbiota. Journal of Clinical Investigation, 2020, 130, 1767-1781.	3.9	97
29	Hydrogen Sulfide Is a Novel Regulator of Bone Formation Implicated in the Bone Loss Induced by Estrogen Deficiency. Journal of Bone and Mineral Research, 2016, 31, 949-963.	3.1	91
30	Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E725-33.	3.3	87
31	T cells: Critical bone regulators in health and disease. Bone, 2010, 47, 461-471.	1.4	86
32	IL-17A Is Increased in Humans with Primary Hyperparathyroidism and Mediates PTH-Induced Bone Loss in Mice. Cell Metabolism, 2015, 22, 799-810.	7.2	82
33	Evolutionary medicine and bone loss in chronic inflammatory diseases—A theory of inflammation-related osteopenia. Seminars in Arthritis and Rheumatism, 2015, 45, 220-228.	1.6	81
34	Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss. PLoS ONE, 2010, 5, e12290.	1.1	78
35	PTH induces bone loss via microbial-dependent expansion of intestinal TNF+ T cells and Th17 cells. Nature Communications, 2020, 11, 468.	5.8	78
36	From Osteoimmunology to Osteomicrobiology: How the Microbiota and the Immune System Regulate Bone. Calcified Tissue International, 2018, 102, 512-521.	1.5	64

ROBERTO PACIFICI

#	Article	IF	CITATIONS
37	The Sclerostin-Independent Bone Anabolic Activity of Intermittent PTH Treatment Is Mediated by T-Cell–Produced Wnt10b. Journal of Bone and Mineral Research, 2014, 29, 43-54.	3.1	63
38	Bone Remodeling and the Microbiome. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031203.	2.9	58
39	Osteomicrobiology: The influence of gut microbiota on bone in health and disease. Bone, 2018, 115, 59-67.	1.4	57
40	TÂcells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Annals of the New York Academy of Sciences, 2016, 1364, 11-24.	1.8	56
41	Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. Journal of Clinical Investigation, 2021, 131, .	3.9	54
42	IL-17 Receptor Signaling in Osteoblasts/Osteocytes Mediates PTH-Induced Bone Loss and Enhances Osteocytic RANKL Production. Journal of Bone and Mineral Research, 2019, 34, 349-360.	3.1	47
43	Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent <scp>PTH</scp> â€induced bone anabolism in mice. EMBO Reports, 2018, 19, 156-171.	2.0	45
44	The Role of IL-17 and TH17 Cells in the Bone Catabolic Activity of PTH. Frontiers in Immunology, 2016, 7, 57.	2.2	43
45	PTH expands short-term murine hemopoietic stem cells through T cells. Blood, 2012, 120, 4352-4362.	0.6	42
46	T cells and post menopausal osteoporosis in murine models. Arthritis Research and Therapy, 2007, 9, 102.	1.6	38
47	Role of T cells in the modulation of PTH action: physiological and clinical significance. Endocrine, 2013, 44, 576-582.	1.1	35
48	Inhibition of antigen presentation and T cell costimulation blocks PTHâ€induced bone loss. Annals of the New York Academy of Sciences, 2010, 1192, 215-221.	1.8	34
49	T Cell–Expressed CD40L Potentiates the Bone Anabolic Activity of Intermittent PTH Treatment. Journal of Bone and Mineral Research, 2015, 30, 695-705.	3.1	33
50	Ovariectomy expands murine short-term hemopoietic stem cell function through T cell expressed CD40L and Wnt10B. Blood, 2013, 122, 2346-2357.	0.6	30
51	The gut microbiota is a transmissible determinant of skeletal maturation. ELife, 2021, 10, .	2.8	25
52	Role of Gut Microbiota in the Skeletal Response to PTH. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 636-645.	1.8	20
53	Metabolomic Associations with Serum Bone Turnover Markers. Nutrients, 2020, 12, 3161.	1.7	19
54	Parathyroid Diseases and T Cells. Current Osteoporosis Reports, 2017, 15, 135-141.	1.5	17

ROBERTO PACIFICI

#	Article	IF	CITATIONS
55	Plasma high-resolution metabolomics identifies linoleic acid and linked metabolic pathways associated with bone mineral density. Clinical Nutrition, 2021, 40, 467-475.	2.3	17
56	IL-7 Drives T Cell-Mediated Bone Loss Following Ovariectomy. Annals of the New York Academy of Sciences, 2006, 1068, 348-351.	1.8	15
57	The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone. Journal of Clinical Investigation, 2022, 132, .	3.9	12
58	Estrogen Deficiency, Postmenopausal Osteoporosis, and Age-Related Bone Loss. , 2013, , 1113-1136.		11
59	CTLAâ€4Ig (abatacept) balances bone anabolic effects of T cells and Wntâ€10b with antianabolic effects of osteoblastic sclerostin. Annals of the New York Academy of Sciences, 2018, 1415, 21-33.	1.8	10
60	Bone quality factor analysis: A new noninvasive technique for the measurement of bone density and bone strength. Journal of Bone and Mineral Research, 1996, 11, 594-599.	3.1	9
61	Mechanisms of Estrogen Action in Bone. , 2008, , 921-933.		5
62	Estrogen deficiency and the pathogenesis of osteoporosis. , 2021, , 773-797.		2
63	Postmenopausal Osteoporosis: How the Hormonal Changes of Menopause Cause Bone Loss. , 2008, , 1041-1054.		1
64	Cyclic Adenosine Monophosphate (cAMP)â€Dependent Phosphodiesterase Inhibition Promotes Bone Anabolism Through <scp>CD8</scp> ⁺ T Cell Wntâ€10b Production in Mice. JBMR Plus, 2022, 6, .	1.3	1
65	Osteoimmunology: Meeting report from the 32nd Annual Meeting of the American Society for Bone and Mineral Research. IBMS BoneKEy, 2011, 8, 123-127.	0.1	0
66	Osteoimmunology: Relation to Disease and Therapy. , 2012, , 237-250.		0
67	Distant Immune and Microbiome Regulation. , 2020, , 599-611.		0

Bone and the microbiome. , 2021, , 969-988.

0