
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5156624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Harnessing neuroplasticity for clinical applications. Brain, 2011, 134, 1591-1609.	7.6	907
2	Direct control of paralysed muscles by cortical neurons. Nature, 2008, 456, 639-642.	27.8	545
3	Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4430-4435.	7.1	474
4	Long-term motor cortex plasticity induced by an electronic neural implant. Nature, 2006, 444, 56-60.	27.8	413
5	Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nature Neuroscience, 2003, 6, 1309-1316.	14.8	258
6	Primate spinal interneurons show pre-movement instructed delay activity. Nature, 1999, 401, 590-594.	27.8	212
7	Volitional control of neural activity: implications for brain-computer interfaces. Journal of Physiology, 2007, 579, 571-579.	2.9	212
8	Gating of Sensory Input at Spinal and Cortical Levels during Preparation and Execution of Voluntary Movement. Journal of Neuroscience, 2012, 32, 890-902.	3.6	172
9	Compact Movable Microwire Array for Long-Term Chronic Unit Recording in Cerebral Cortex of Primates. Journal of Neurophysiology, 2007, 98, 3109-3118.	1.8	159
10	Chapter 11 Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Progress in Brain Research, 1991, 87, 213-252.	1.4	152
11	Spike-Timing-Dependent Plasticity in Primate Corticospinal Connections Induced during Free Behavior. Neuron, 2013, 80, 1301-1309.	8.1	132
12	Distributed cortical adaptation during learning of a brain-computer interface task. Proceedings of the United States of America, 2013, 110, 10818-10823.	7.1	132
13	Afferent Encoding of Central Oscillations in the Monkey Arm. Journal of Neurophysiology, 2006, 95, 3904-3910.	1.8	126
14	Synaptic Interactions between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of Intracellular Membrane Potentials <i>In Vivo</i> . Journal of Neuroscience, 1996, 16, 7757-7767.	3.6	124
15	An autonomous implantable computer for neural recording and stimulation in unrestrained primates. Journal of Neuroscience Methods, 2005, 148, 71-77.	2.5	112
16	Activity of Spinal Interneurons and Their Effects on Forearm Muscles During Voluntary Wrist Movements in the Monkey. Journal of Neurophysiology, 1998, 80, 2475-2494.	1.8	104
17	Firing patterns of epileptic and normal neurons in the chronic alumina focus in undrugged monkeys during different behavioral states. Brain Research, 1975, 98, 1-20.	2.2	103
18	Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Frontiers in Neural Circuits, 2013, 7, 57.	2.8	99

#	Article	IF	CITATIONS
19	Forelimb Movements and Muscle Responses Evoked by Microstimulation of Cervical Spinal Cord in Sedated Monkeys. Journal of Neurophysiology, 2007, 97, 110-120.	1.8	96
20	The Neurochip-2: An Autonomous Head-Fixed Computer for Recording and Stimulating in Freely Behaving Monkeys. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 427-435.	4.9	96
21	Help, hope, and hype: Ethical dimensions ofneuroprosthetics. Science, 2017, 356, 1338-1339.	12.6	83
22	Encoding of motor parameters by corticomotoneuronal (CM) and rubromotoneuronal (RM) cells producing postspike facilitation of forelimb muscles in the behaving monkey. Behavioural Brain Research, 1988, 28, 181-191.	2.2	82
23	Phase-Locked Stimulation during Cortical Beta Oscillations Produces Bidirectional Synaptic Plasticity in Awake Monkeys. Current Biology, 2018, 28, 2515-2526.e4.	3.9	75
24	Correlations Between the Same Motor Cortex Cells and Arm Muscles During a Trained Task, Free Behavior, and Natural Sleep in the Macaque Monkey. Journal of Neurophysiology, 2007, 97, 360-374.	1.8	71
25	Operant conditioning of isolated activity in specific muscles and precentral cells. Brain Research, 1972, 40, 19-23.	2.2	70
26	Effects of synchrony between primate corticomotoneuronal cells on post-spike facilitation of muscles and motor units. Neuroscience Letters, 1989, 96, 76-81.	2.1	69
27	Effects of Input Synchrony on the Firing Rate of a Three-Conductance Cortical Neuron Model. Neural Computation, 1994, 6, 1111-1126.	2.2	66
28	Closed-loop neuroscience and neuroengineering. Frontiers in Neural Circuits, 2014, 8, 115.	2.8	66
29	Dynamic Modulation of Local Population Activity by Rhythm Phase in Human Occipital Cortex During a Visual Search Task. Frontiers in Human Neuroscience, 2010, 4, 197.	2.0	65
30	Characteristic Membrane Potential Trajectories in Primate Sensorimotor Cortex Neurons Recorded In Vivo. Journal of Neurophysiology, 2005, 94, 2713-2725.	1.8	62
31	Volitional control of single cortical neurons in a brain–machine interface. Journal of Neural Engineering, 2011, 8, 025017.	3.5	62
32	Response Patterns and Force Relations of Monkey Spinal Interneurons During Active Wrist Movement. Journal of Neurophysiology, 1998, 80, 2495-2513.	1.8	60
33	Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex. Brain Research, 1988, 442, 359-362.	2.2	58
34	Real-time control of a robotic arm by neuronal ensembles. Nature Neuroscience, 1999, 2, 583-584.	14.8	58
35	Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements. Clinical Neurophysiology, 2015, 126, 2150-2161.	1.5	54
36	Relationships between spike-free local field potentials and spike timing in human temporal cortex. Journal of Neurophysiology, 2012, 107, 1808-1821.	1.8	48

#	Article	IF	CITATIONS
37	Synaptic interactions mediating synchrony and oscillations in primate sensorimotor cortex. Journal of Physiology (Paris), 2000, 94, 323-331.	2.1	46
38	Myo-Cortical Crossed Feedback Reorganizes Primate Motor Cortex Output. Journal of Neuroscience, 2013, 33, 5261-5274.	3.6	46
39	Paired Stimulation for Spike-Timing-Dependent Plasticity in Primate Sensorimotor Cortex. Journal of Neuroscience, 2017, 37, 1935-1949.	3.6	39
40	Responses of primate locus coeruleus and subcoeruleus neurons to stimulation at reinforcing brain sites and to natural reinforcers. Brain Research, 1976, 109, 497-514.	2.2	38
41	Functions of mammalian spinal interneurons during movement. Current Opinion in Neurobiology, 2000, 10, 699-707.	4.2	36
42	Volitional Control of Cortical Oscillations and Synchrony. Neuron, 2013, 77, 216-218.	8.1	35
43	Restoring motor function with bidirectional neural interfaces. Progress in Brain Research, 2015, 218, 241-252.	1.4	32
44	Cortical mechanisms controlling limb movement. Current Opinion in Neurobiology, 1993, 3, 932-939.	4.2	24
45	Task-Dependent Modulation of Primary Afferent Depolarization in Cervical Spinal Cord of Monkeys Performing an Instructed Delay Task. Journal of Neurophysiology, 2009, 102, 85-99.	1.8	23
46	Learned control of inter-hemispheric connectivity: Effects on bimanual motor performance. Human Brain Mapping, 2017, 38, 4353-4369.	3.6	20
47	Chapter 17 Distributed processing in the motor system: spinal cord perspective. Progress in Brain Research, 2001, 130, 267-278.	1.4	17
48	Simultaneous epidural functional near-infrared spectroscopy and cortical electrophysiology as a tool for studying local neurovascular coupling in primates. NeuroImage, 2015, 120, 394-399.	4.2	17
49	Exploiting Electrocorticographic Spectral Characteristics for Optimized Signal Chain Design: A 1.08 W Analog Front End With Reduced ADC Resolution Requirements <formula formulatype="inline"> <tex notation="TeX"></tex> </formula> . IEEE Transactions on Biomedical Circuits and Systems, 2016. 10. 1171-1180.	4.0	17
50	Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement. Journal of Neurophysiology, 2017, 117, 1112-1125.	1.8	15
51	Unit responses recorded from cervical spinal cord of awake monkey. Brain Research, 1973, 53, 445-450.	2.2	14
52	Volitional muscle activity paired with transcranial magnetic stimulation increases corticospinal excitability. Frontiers in Neuroscience, 2014, 8, 442.	2.8	14
53	Simultaneous and independent control of a brain-computer interface and contralateral limb movement. Brain-Computer Interfaces, 2015, 2, 174-185.	1.8	14
54	Open-Source, Low Cost, Free-Behavior Monitoring, and Reward System for Neuroscience Research in Non-human Primates. Frontiers in Neuroscience, 2017, 11, 265.	2.8	11

#	Article	IF	CITATIONS
55	Neurochip3: An Autonomous Multichannel Bidirectional Brain-Computer Interface for Closed-Loop Activity-Dependent Stimulation. Frontiers in Neuroscience, 2021, 15, 718465.	2.8	10
56	An Integrate-and-Fire Spiking Neural Network Model Simulating Artificially Induced Cortical Plasticity. ENeuro, 2021, 8, ENEURO.0333-20.2021.	1.9	9
5 7	Cycle-Triggered Cortical Stimulation during Slow Wave Sleep Facilitates Learning a BMI Task: A Case Report in a Non-Human Primate. Frontiers in Behavioral Neuroscience, 2017, 11, 59.	2.0	8
58	Functional Properties of Primate Spinal Interneurones During Voluntary Hand Movements. Advances in Experimental Medicine and Biology, 2002, 508, 265-271.	1.6	8
59	Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface. PLoS Computational Biology, 2017, 13, e1005343.	3.2	8
60	A spectrum-equalizing analog front end for low-power electrocorticography recording. , 2014, , .		7
61	Reconfiguring Motor Circuits for a Joint Manual and BCI Task. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 248-257.	4.9	7
62	Cortical Responses to Vagus Nerve Stimulation Are Modulated by Brain State in Nonhuman Primates. Cerebral Cortex, 2021, 31, 5289-5307.	2.9	7
63	Integration and Differentiation in Dynamic Recurrent Neural Networks. Neural Computation, 1994, 6, 405-419.	2.2	6
64	Inferring Cortical Connectivity From ECoG Signals Using Graph Signal Processing. IEEE Access, 2019, 7, 109349-109362.	4.2	6
65	Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill. PLoS Computational Biology, 2016, 12, e1004931.	3.2	6
66	An electronic activity integrator for operant conditioning of patterns of neural and muscular activity. Electroencephalography and Clinical Neurophysiology, 1975, 38, 87-89.	0.3	5
67	Brain State-Dependence of Electrically Evoked Potentials Monitored With Head-Mounted Electronics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 756-761.	4.9	5
68	Artistic explorations of the brain. Frontiers in Human Neuroscience, 2012, 6, 9.	2.0	5
69	Movement-dependent electrical stimulation for volitional strengthening of cortical connections in behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
70	Motor Cortex Plasticity Driven by Artificial Feedback from an Autonomous, Closed-Loop Neural Implant. Neurosurgery, 2009, 65, 420-421.	1.1	3
71	An interspecies comparative study of invasive electrophysiological functional connectivity. Brain and Behavior, 2017, 7, e00863.	2.2	3
72	The Motor Cortex. Hiroshi Asanuma. Quarterly Review of Biology, 1990, 65, 527-528.	0.1	0

#	Article	IF	CITATIONS
73	Cortical Stimulation Paired With Volitional Unimanual Movement Affects Interhemispheric Communication. Frontiers in Neuroscience, 2021, 15, 782188.	2.8	0