Daniele Bartoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5156249/publications.pdf

Version: 2024-02-01

623734 752698 101 751 14 20 citations h-index g-index papers 101 101 101 186 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Minimal Linear Codes in Odd Characteristic. IEEE Transactions on Information Theory, 2019, 65, 4152-4155.	2.4	41
2	Maximum Scattered Linear Sets and Complete Caps in Galois Spaces. Combinatorica, 2018, 38, 255-278.	1.2	37
3	On a conjecture about a class of permutation trinomials. Finite Fields and Their Applications, 2018, 52, 30-50.	1.0	32
4	Exceptional scattered polynomials. Journal of Algebra, 2018, 509, 507-534.	0.7	30
5	On construction and (non)existence of c-(almost) perfect nonlinear functions. Finite Fields and Their Applications, 2021, 72, 101835.	1.0	25
6	On a generalization of planar functions. Journal of Algebraic Combinatorics, 2020, 52, 187-213.	0.8	22
7	Complete permutation polynomials from exceptional polynomials. Journal of Number Theory, 2017, 176, 46-66.	0.4	21
8	On monomial complete permutation polynomials. Finite Fields and Their Applications, 2016, 41, 132-158.	1.0	18
9	The non-existence of some NMDS codes and the extremal sizes of complete $\$\$(n,3)\$\$$ (n , 3) -arcs in $\$\$PG(2,16)\$\$$ PG (2 , 16). Designs, Codes, and Cryptography, 2014, 72, 129-134.	1.6	16
10	Permutation polynomials, fractional polynomials, and algebraic curves. Finite Fields and Their Applications, 2018, 51, 1-16.	1.0	16
11	A new family of maximum scattered linear sets in PG(1, q^6). Ars Mathematica Contemporanea, 2020, 19, 125-145.	0.6	16
12	New Quantum Caps in PG(4, 4). Journal of Combinatorial Designs, 2012, 20, 448-466.	0.6	15
13	A family of permutation trinomials over <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>q<td>nl:10 nl:mi><td>ml:15row><mr< td=""></mr<></td></td></mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math>	nl: 1 0 nl:mi> <td>ml:15row><mr< td=""></mr<></td>	ml: 15 row> <mr< td=""></mr<>
14	The structure of quaternary quantum caps. Designs, Codes, and Cryptography, 2014, 72, 733-747.	1.6	14
15	On the Covering Radius of MDS Codes. IEEE Transactions on Information Theory, 2015, 61, 801-811.	2.4	14
16	Multi point AG codes on the GK maximal curve. Designs, Codes, and Cryptography, 2018, 86, 161-177.	1.6	14
17	On sizes of complete arcs in <mml:math altimg="si125.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi>G</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2 Discrete Mathematics, 2012, 312, 680-698.</mml:mn></mml:mrow></mml:math>	k/mml:mn:	> < 13 > < mml:mo>, <
18	AG codes and AG quantum codes from the GGS curve. Designs, Codes, and Cryptography, 2018, 86, 2315-2344.	1.6	13

#	Article	IF	CITATIONS
19	Small Complete Caps from Singular Cubics. Journal of Combinatorial Designs, 2014, 22, 409-424.	0.6	12
20	On the classification of exceptional scattered polynomials. Journal of Combinatorial Theory - Series A, 2021, 179, 105386.	0.8	12
21	New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane. Journal of Geometry, 2013, 104, 11-43.	0.4	11
22	Small complete caps from singular cubics, II. Journal of Algebraic Combinatorics, 2015, 41, 185-216.	0.8	11
23	On the minimum size of complete arcs and minimal saturating sets in projective planes. Journal of Geometry, 2013, 104, 409-419.	0.4	10
24			

#	Article	IF	CITATIONS
37	On trinomials of type X+(1 + AX(â^'1) + BX(â^'1)), n, m odd, over Fq2, q = 22+1. Finite Fields and Applications, 2021, 72, 101816.	Their 1.0	7
38	On a conjecture about maximum scattered subspaces of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>qF</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>q<td>l::@i9 l:mi> <td> :mrow><m < td=""></m <></td></td></mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math>	l: :@i9 l:mi> <td> :mrow><m < td=""></m <></td>	: mrow> <m < td=""></m <>
39	The minimum order of complete caps in \$PG(4,4)\$. Advances in Mathematics of Communications, 2011, 5, 37-40.	0.7	7
40	A note on multiple coverings of the farthest-off points. Electronic Notes in Discrete Mathematics, 2013, 40, 289-293.	0.4	6
41	On the Structure of Semiovals of Small Size. Journal of Combinatorial Designs, 2014, 22, 525-536.	0.6	6
42	The nonexistence of an additive quaternary <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo stretchy="false">[</mml:mo><mml:mn>15</mml:mn><mml:mo>,</mml:mo><mml:mn>5, stretchy="false">]</mml:mn></mml:math> -code. Finite Fields and Their Applications, 2015, 36, 29-40.		€mml:mn>
43	A note on equidistant subspace codes. Discrete Applied Mathematics, 2016, 198, 291-296.	0.9	6
44	A construction of small complete caps in projective spaces. Journal of Geometry, 2017, 108, 215-246.	0.4	6
45	Minimum weight codewords in dual algebraic-geometric codes from the Giulietti-Korchm \tilde{A}_i ros curve. Designs, Codes, and Cryptography, 2019, 87, 1433-1445.	1.6	6
46	Resolving sets for higher dimensional projective spaces. Finite Fields and Their Applications, 2020, 67, 101723.	1.0	6
47	Evasive subspaces. Journal of Combinatorial Designs, 2021, 29, 533-551.	0.6	6
48	Multiple coverings of the farthest-off points with small density from projective geometry. Advances in Mathematics of Communications, 2015, 9, 63-85.	0.7	6
49	Investigating the exceptionality of scattered polynomials. Finite Fields and Their Applications, 2022, 77, 101956.	1.0	6
50	Low c-differential uniformity for functions modified on subfields. Cryptography and Communications, 2022, 14, 1211-1227.	1.4	6
51	Small complete caps in three-dimensional Galois spaces. Finite Fields and Their Applications, 2013, 24, 184-191.	1.0	5
52	A new algorithm and a new type of estimate for the smallest size of complete arcs in. Electronic Notes in Discrete Mathematics, 2013, 40, 27-31.	0.4	5
53	Classification of the smallest minimal 1-saturating sets in. Electronic Notes in Discrete Mathematics, 2013, 40, 229-233.	0.4	5
54	Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic conjecture. Problems of Information Transmission, 2014, 50, 320-339.	0.5	5

#	Article	IF	CITATIONS
55	New types of estimates for the smallest size of complete arcs in a finite Desarguesian projective plane. Journal of Geometry, 2015, 106, 1-17.	0.4	5
56	A family of semifields in characteristic 2. Journal of Algebraic Combinatorics, 2017, 45, 455-473.	0.8	5
57	Pure gaps on curves with many rational places. Finite Fields and Their Applications, 2018, 53, 287-308.	1.0	5
58	On a conjecture on permutation rational functions over finite fields. Finite Fields and Their Applications, 2021, 76, 101904.	1.0	5
59	Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10, 355-365.	0.7	5
60	On a conjecture on APN permutations. Cryptography and Communications, 2022, 14, 925-931.	1.4	5
61	New MRD codes from linear cutting blocking sets. Annali Di Matematica Pura Ed Applicata, 2023, 202, 115-142.	1.0	5
62	New upper bounds on the smallest size of a saturating set in a projective plane. , 2016, , .		4
63	Upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane based on computer search. Journal of Geometry, 2016, 107, 89-117.	0.4	4
64	On the completeness of plane cubic curves over finite fields. Designs, Codes, and Cryptography, 2017, 83, 233-267.	1.6	4
65	New Bounds for Linear Codes of Covering Radius 2. Lecture Notes in Computer Science, 2017, , 1-10.	1.3	4
66	Complete \$\$varvec{(k,4)}\$\$ (k,4) -arcs from quintic curves. Journal of Geometry, 2017, 108, 985-1011.	0.4	4
67	On permutation trinomials of type <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:math>	ıl:mn> <mr< td=""><td>nl:fasup><mn< td=""></mn<></td></mr<>	nl:fasup> <mn< td=""></mn<>
68	Weierstrass semigroups at every point of the Suzuki curve. Acta Arithmetica, 2021, 197, 1-20.	0.4	4
69	On certain self-orthogonal AG codes with applications to Quantum error-correcting codes. Designs, Codes, and Cryptography, 2021, 89, 1221-1239.	1.6	4
70	Further results on multiple coverings of the farthest-off points. Advances in Mathematics of Communications, 2016, 10, 613-632.	0.7	4
71	r-fat linearized polynomials over finite fields. Journal of Combinatorial Theory - Series A, 2022, 189, 105609.	0.8	4
72	Complete Caps in AG(N,q) with Both <i>N</i> and <i>q</i> Odd. Journal of Combinatorial Designs, 2017, 25, 419-425.	0.6	3

#	Article	IF	Citations
73	A family of semifields in odd characteristic. Designs, Codes, and Cryptography, 2018, 86, 611-621.	1.6	3
74	A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7, 319-334.	0.7	3
75	Algebraic Constructions of Complete m-Arcs. Combinatorica, 2022, 42, 673-700.	1.2	3
76	On the size of the automorphism group of a plane algebraic curve. Journal of Pure and Applied Algebra, 2013, 217, 1224-1236.	0.6	2
77	Planar polynomials arising from linearized polynomials. Journal of Algebra and Its Applications, 2022, 21, .	0.4	2
78	New examples of maximal curves with low genus. Finite Fields and Their Applications, 2020, 68, 101744.	1.0	2
79	A family of planar binomials in characteristic 2. Finite Fields and Their Applications, 2020, 63, 101651.	1.0	2
80	Improvement to the sunflower bound for a class of equidistant constant dimension subspace codes. Journal of Geometry, 2021, $112,1.$	0.4	2
81	On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Advances in Mathematics of Communications, 2014, 8, 271-280.	0.7	2
82	Conjectural upper bounds on the smallest size of a complete cap in PG(N , q), N \hat{a} %¥ 3. Electronic Notes in Discrete Mathematics, 2017, 57, 15-20.	0.4	1
83	Blocking semiovals in PG(2,q2), q odd, admitting PGL(2,q) as an automorphism group. Finite Fields and Their Applications, 2018, 54, 315-334.	1.0	1
84	On the Smallest Size of an Almost Complete Subset of a Conic in PG(2, q) and Extendability of Reed–Solomon Codes. Problems of Information Transmission, 2018, 54, 101-115.	0.5	1
85	Rational functions with small value set. Journal of Algebra, 2021, 565, 675-690.	0.7	1
86	On the weight distribution of some minimal codes. Designs, Codes, and Cryptography, 2021, 89, 471-487.	1.6	1
87	A Characterization of Hermitian Varieties as Codewords. Electronic Journal of Combinatorics, 2018, 25, .	0.4	1
88	The Diophantine equation $(x+1)^k+(x+2)^k+cdots+(ell\ x)^k=y^n$ revisited. Publicationes Mathematicae, 2020, 96, 111-120.	0.2	1
89	Minimal codewords arising from the incidence of points and hyperplanes in projective spaces. Advances in Mathematics of Communications, 2023, 17, 56-77.	0.7	1
90	On resolving sets in the point-line incidence graph of PG(n, q). Ars Mathematica Contemporanea, 2020, 19, 231-247.	0.6	1

#	Article	lF	CITATIONS
91	On the infiniteness of a family of APN functions. Journal of Algebra, 2022, 598, 68-84.	0.7	1
92	A short note on polynomials $f(X) = X + AX1 + q2(q\hat{a}^2)/4 + BX1 + 3q2(q\hat{a}^2)/4$ \hat{a}^2 ?q2[X], q even. Journal of Algebra and Its Applications, 2023, 22, .	0.4	1
93	The second and the third smallest arrangements of hyperplanes in finite projective spaces. Finite Fields and Their Applications, 2016, 37, 225-239.	1.0	O
94	On the spectrum of sizes of semiovals contained in the Hermitian curve. European Journal of Combinatorics, 2016, 52, 223-233.	0.8	0
95	Upper bounds on the smallest size of a complete cap in PG(3, q) and PG(4, q). Electronic Notes in Discrete Mathematics, 2017, 57, 21-26.	0.4	O
96	Completeness of the 95256-cap in PG (12, 4). Electronic Notes in Discrete Mathematics, 2017, 57, 27-32.	0.4	0
97	Linear codes from Denniston maximal arcs. Designs, Codes, and Cryptography, 2019, 87, 795-806.	1.6	O
98	Explicit maximal and minimal curves of Artin–Schreier type from quadratic forms. Applicable Algebra in Engineering, Communications and Computing, 2020, 32, 507.	0.5	0
99	? _{<i>p</i><cup></cup>} -maximal curves with many automorphisms are Galois-covered by the Hermitian curve. Advances in Geometry, 2021, .	0.4	O
100	Constant dimension codes from Riemann-Roch spaces. Advances in Mathematics of Communications, 2017, 11, 705-713.	0.7	0
101	Two-to-one functions from Galois extensions. Discrete Applied Mathematics, 2022, 309, 194-201.	0.9	O