LingQiang Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5156015/publications.pdf

Version: 2024-02-01

		567281	752698
53	624	15	20
papers	citations	h-index	g-index
55 all docs	55 docs citations	55 times ranked	665 citing authors

#	Article	IF	CITATIONS
1	HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis. Infection and Immunity, 2016, 84, 2209-2219.	2.2	35
2	Characterization and Pathogenicity of the Porcine Deltacoronavirus Isolated in Southwest China. Viruses, 2019, 11, 1074.	3.3	32
3	Identification of the immunodominant neutralizing regions in the spike glycoprotein of porcine deltacoronavirus. Virus Research, 2020, 276, 197834.	2.2	30
4	QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis. Frontiers in Microbiology, 2018, 9, 212.	3.5	29
5	A TolC-Like Protein of Actinobacillus pleuropneumoniae Is Involved in Antibiotic Resistance and Biofilm Formation. Frontiers in Microbiology, 2016, 07, 1618.	3.5	27
6	Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium. Virus Genes, 2016, 52, 354-364.	1.6	24
7	Effect of cheY deletion on growth and colonization in a Haemophilus parasuis serovar 13 clinical strain EP3. Gene, 2016, 577, 96-100.	2.2	22
8	The arcA gene contributes to the serum resistance and virulence of Haemophilus parasuis serovar 13 clinical strain EP3. Veterinary Microbiology, 2016, 196, 67-71.	1.9	20
9	A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae. Microbial Pathogenesis, 2019, 134, 103596.	2.9	19
10	Establishment of a Successive Markerless Mutation System in Haemophilus parasuis through Natural Transformation. PLoS ONE, 2015, 10, e0127393.	2.5	19
11	Phaeohyphomycotic dermatitis in a giant panda (Ailuropoda melanoleuca) caused by Cladosporium cladosporioides. Medical Mycology Case Reports, 2013, 2, 119-121.	1.3	18
12	Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. International Journal of Molecular Sciences, 2020, 21, 648.	4.1	18
13	Prevalence and seroepidemiology of <i>Haemophilus parasuis </i> in Sichuan province, China. PeerJ, 2017, 5, e3379.	2.0	18
14	Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006–2012. Journal of Veterinary Science, 2018, 19, 151.	1.3	17
15	Aerosol and Contact Transmission Following Intranasal Infection of Mice with Japanese Encephalitis Virus. Viruses, 2019, 11, 87.	3.3	17
16	Tissue tropism and molecular characterization of a Japanese encephalitis virus strain isolated from pigs in southwest China. Virus Research, 2016, 215, 55-64.	2.2	16
17	Two novel neutralizing antigenic epitopes of the s1 subunit protein of a QX-like avian infectious bronchitis virus strain Sczy3 as revealed using a phage display peptide library. Veterinary Immunology and Immunopathology, 2015, 168, 49-55.	1.2	15
18	Mutation of I176R in the E coding region weakens Japanese encephalitis virus neurovirulence, but not its growth rate in BHK-21 cells. Archives of Virology, 2018, 163, 1351-1355.	2.1	13

#	Article	IF	Citations
19	Comparative proteome analysis of the extracellular proteins of two Haemophilus parasuis strains Nagasaki and SW114. Biochemical and Biophysical Research Communications, 2014, 446, 997-1001.	2.1	12
20	OxyR of Haemophilus parasuis is a global transcriptional regulator important in oxidative stress resistance and growth. Gene, 2018, 643, 107-116.	2.2	12
21	Immunoprotective Efficacy of Six In vivo-Induced Antigens against Actinobacillus pleuropneumoniae as Potential Vaccine Candidates in Murine Model. Frontiers in Microbiology, 2016, 7, 1623.	3.5	11
22	Introducing a cleavable signal peptide enhances the packaging efficiency of lentiviral vectors pseudotyped with Japanese encephalitis virus envelope proteins. Virus Research, 2017, 229, 9-16.	2.2	10
23	Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401. Frontiers in Cellular and Infection Microbiology, 2018, 8, 32.	3.9	10
24	Deletion of Polyamine Transport Protein PotD Exacerbates Virulence in Glaesserella (Haemophilus) parasuis in the Form of Non-biofilm-generated Bacteria in a Murine Acute Infection Model. Virulence, 2021, 12, 520-546.	4.4	10
25	TolC2 is required for the resistance, colonization and virulence of Actinobacillus pleuropneumoniae. Journal of Medical Microbiology, 2017, 66, 1170-1176.	1.8	10
26	Comparative proteomic analysis of the membrane proteins of two Haemophilus parasuis strains to identify proteins that may help in habitat adaptation and pathogenesis. Proteome Science, 2014, 12, 38.	1.7	9
27	Complete Genome Sequence of Highly Virulent Haemophilus parasuis Serotype 11 Strain SC1401. Genome Announcements, 2016, 4, .	0.8	9
28	Identification, genotyping, and pathogenicity of Trichosporon spp. Isolated from Giant pandas (Ailuropoda melanoleuca). BMC Microbiology, 2019, 19, 113.	3.3	9
29	Absence of TolC Impairs Biofilm Formation in Actinobacillus pleuropneumoniae by Reducing Initial Attachment. PLoS ONE, 2016, 11, e0163364.	2.5	8
30	The NS3 and NS4A genes as the targets of RNA interference inhibit replication of Japanese encephalitis virus in vitro and in vivo. Gene, 2016, 594, 183-189.	2.2	8
31	Enhanced Immune Responses Against Japanese Encephalitis Virus Infection Using Japanese Encephalitis Live-Attenuated Virus Adjuvanted with Montanide GEL 01 ST in Mice. Vector-Borne and Zoonotic Diseases, 2019, 19, 835-843.	1.5	8
32	A trivalent Apx-fusion protein delivered by E. coli outer membrane vesicles induce protection against Actinobacillus pleuropneumoniae of serotype 1 and 7 challenge in a murine model. PLoS ONE, 2018, 13, e0191286.	2.5	8
33	A Comparative Transcriptomic Analysis Reveals That HSP90AB1 Is Involved in the Immune and Inflammatory Responses to Porcine Deltacoronavirus Infection. International Journal of Molecular Sciences, 2022, 23, 3280.	4.1	8
34	Immunogenicity of the recombinant HxuCBA proteins encoded by hxuCBA gene cluster of Haemophilus parasuis in mice. Gene, 2016, 591, 478-483.	2.2	7
35	Polyamine Transport Protein PotD Protects Mice against Haemophilus parasuis and Elevates the Secretion of Pro-Inflammatory Cytokines of Macrophage via JNK–MAPK and NF–ήB Signal Pathways through TLR4. Vaccines, 2019, 7, 216.	4.4	7
36	Study of the inhibitory effect of STAT1 on PDCoV infection. Veterinary Microbiology, 2022, 266, 109333.	1.9	7

#	Article	IF	CITATIONS
37	Enhanced immune responses against Japanese encephalitis virus using recombinant adenoviruses coexpressing Japanese encephalitis virus envelope and porcine interleukin-6 proteins in mice. Virus Research, 2016, 222, 34-40.	2.2	6
38	Phylogenetic analysis reveals that Japanese encephalitis virus genotype III is still prevalent in swine herds in Sichuan province in China. Archives of Virology, 2016, 161, 1719-1722.	2.1	6
39	Polyamine-binding protein PotD2 is required for stress tolerance and virulence in Actinobacillus pleuropneumoniae. Antonie Van Leeuwenhoek, 2017, 110, 1647-1657.	1.7	6
40	Effective Pro-Inflammatory Induced Activity of GALT, a Conserved Antigen in A. Pleuropneumoniae, Improves the Cytokines Secretion of Macrophage via p38, ERK1/2 and JNK MAPKs Signal Pathway. Frontiers in Cellular and Infection Microbiology, 2018, 8, 337.	3.9	6
41	Escherichia coli-derived outer membrane vesicles deliver galactose-1-phosphate uridyltransferase and yield partial protection against Actinobacillus pleuropneumoniae in mice. Journal of Microbiology and Biotechnology, 2018, 28, 2095-2105.	2.1	6
42	HSP90 inhibitors 17-AAG and VER-82576 inhibit porcine deltacoronavirus replication in vitro. Veterinary Microbiology, 2022, 265, 109316.	1.9	6
43	Porcine Deltacoronavirus (PDCoV) Entry into PK-15 Cells by Caveolae-Mediated Endocytosis. Viruses, 2022, 14, 496.	3.3	6
44	Construction of targeted and integrative promoter-reporter plasmids pDK-K and pDK-G to measure gene expression activity in Haemophilus parasuis. Microbial Pathogenesis, 2019, 134, 103565.	2.9	5
45	Identification of Actinobacillus pleuropneumoniae Genes Preferentially Expressed During Infection Using In Vivo-Induced Antigen Technology (IVIAT). Journal of Microbiology and Biotechnology, 2015, 25, 1606-1613.	2.1	5
46	A streptomycin resistance marker in (i) H.Âparasuis (i) based on site-directed mutations in (i) rpsL (i) gene to perform unmarked in-frame mutations and to verify natural transformation. Peerl, 2018, 6, e4253.	2.0	5
47	Comparative transcriptome analysis reveals that deletion of CheY influences gene expressions of ABC transports and metabolism in Haemophilus parasuis. Functional and Integrative Genomics, 2021, 21, 695-707.	3.5	4
48	Development and application of a visual microarray for synchronously detecting H5N1, H7N9 and H9N2 avian influenza virus RNA. Journal of Virological Methods, 2022, 301, 114371.	2.1	4
49	Immunogenicity of transmissible gastroenteritis virus (TGEV) M gene delivered by attenuated Salmonella typhimurium in mice. Virus Genes, 2016, 52, 218-227.	1.6	3
50	Genomic changes in an attenuated genotype I Japanese encephalitis virus and comparison with virulent parental strain. Virus Genes, 2018, 54, 424-431.	1.6	3
51	Bioinformatics analysis of the complete nucleotide sequence of htrA gene in Haemophilus parasuis. , 2014, , .		0
52	Promoter methylation, mRNA expression of goat tumor-associated genes and mRNA expression of DNA methyltransferase in enzootic nasal tumors. Molecular Medicine Reports, 2015, 12, 6275-6285.	2.4	0
53	Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS ONE, 2018, 13, e0198207.	2.5	0