Vinod Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155725/publications.pdf

Version: 2024-02-01

471509 454955 1,083 33 17 30 citations h-index g-index papers 34 34 34 1561 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optical and Photocatalytic Properties of Heavily F ^{â€"} -Doped SnO ₂ Nanocrystals by a Novel Single-Source Precursor Approach. Inorganic Chemistry, 2011, 50, 5637-5645.	4.0	130
2	Purification and Characterization of a Novel and Robust L-Asparaginase Having Low-Glutaminase Activity from Bacillus licheniformis: In Vitro Evaluation of Anti-Cancerous Properties. PLoS ONE, 2014, 9, e99037.	2.5	125
3	Efficient production of l-asparaginase from Bacillus licheniformis with low-glutaminase activity: Optimization, scale up and acrylamide degradation studies. Bioresource Technology, 2012, 125, 11-16.	9.6	105
4	Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresource Technology, 2019, 275, 430-433.	9.6	71
5	Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature. Magnetochemistry, 2020, 6, 15.	2.4	63
6	Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance. Bioresource Technology, 2018, 250, 922-926.	9.6	62
7	Investigation of cation (Sn2+) and anion (N3â^') substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10. Journal of Hazardous Materials, 2011, 189, 502-508.	12.4	59
8	Production of Microbial Cellulose by a Bacterium Isolated from Fruit. Applied Biochemistry and Biotechnology, 2012, 167, 1157-1171.	2.9	51
9	Novel Lithium-Containing Honeycomb Structures. Inorganic Chemistry, 2012, 51, 10471-10473.	4.0	48
10	Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis. Biotechnology and Bioprocess Engineering, 2013, 18, 787-795.	2.6	39
11	Bioprocessing of Jatropha curcas seed oil and deoiled seed hulls for the production of biodiesel and biogas. Biomass and Bioenergy, 2012, 40, 13-18.	5.7	37
12	Formation of honeycomb ordered monoclinic Li2M2TeO6 (M = Cu, Ni) and disordered orthorhombic Li2Ni2TeO6 oxides. Dalton Transactions, 2013, 42, 14992.	3.3	37
13	Preparation and characterization of melamine–formaldehyde–polyvinylpyrrolidone polymer resin for better industrial uses over melamine resins. Journal of Applied Polymer Science, 2009, 114, 1870-1878.	2.6	28
14	Facile Synthesis of Ce–Doped SnO ₂ Nanoparticles: A Promising Photocatalyst for Hydrogen Evolution and Dyes Degradation. ChemistrySelect, 2019, 4, 3722-3729.	1.5	28
15	A Theoretical Model to Study the Interaction of Erythroâ€Noscapines with nsP3 protease of Chikungunya Virus. ChemistrySelect, 2019, 4, 4892-4900.	1.5	26
16	Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant. Bioresource Technology, 2016, 218, 1246-1248.	9.6	24
17	Nanotechnology: Nanomedicine, Nanotoxicity and Future Challenges. Nanoscience and Nanotechnology - Asia, 2018, 9, 64-78.	0.7	24
18	Interesting cationic (Li+/Fe3+/Te6+) variations in new rocksalt ordered structures. Journal of Chemical Sciences, 2015, 127, 225-233.	1.5	16

#	Article	IF	CITATIONS
19	Pyrrolothiazolones as Potential Inhibitors for the nsP2Bâ€nsP3 Protease of Dengue Virus and Their Mechanism of Synthesis. ChemistrySelect, 2019, 4, 9410-9419.	1.5	16
20	Sustainable process for the production of cellulose by an Acetobacter pasteurianus RSV-4 (MTCC) Tj ETQq0 0 0 rg	gBT (Overl	ock 10 Tf 50
21	Facile Synthesis of Nâ€Doped SnO ₂ Nanoparticles: A Cocatalystâ€Free Promising Photocatalyst for Hydrogen Generation. ChemistrySelect, 2020, 5, 7775-7782.	1.5	13
22	Chemoenzymatic Synthesis of 3′-Deoxy-3′-(4-Substituted-Triazol-1-YL)-5-Methyluridine. Nucleosides, Nucleotides and Nucleic Acids, 2013, 32, 646-659.	1.1	12
23	Eco-friendly methodology for efficient synthesis and scale-up of 2-ethylhexyl-p-methoxycinnamate using Rhizopus oryzae lipase and its biological evaluation. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 907-912.	3.0	12
24	SYNTHESIS AND SPECTROSCOPIC STUDIES OF Cu(II) COMPLEXES OF SOME LIGANDS CONTAINING THE AMIDE GROUP. Journal of Coordination Chemistry, 1993, 29, 33-43.	2.2	9
25	ORGANIC SYNTHESIS OF MAIZE STARCH-BASED POLYMER USINGRhizopus oryzaeLIPASE, SCALE UP, AND ITS CHARACTERIZATION. Preparative Biochemistry and Biotechnology, 2014, 44, 321-331.	1.9	8
26	An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Engineering and Regenerative Medicine, $0,$	3.7	8
27	Kinetics of the Alkali-Catalyzed o-Cresol-Formaldehyde Reaction. Journal of Macromolecular Science Part A, Chemistry, 1979, 13, 143-152.	0.3	5
28	Molecular activation energies (î"î½*2) of L-lysine, L-tyrosine, L-proline, DL-alanine, glycerol, orcinol, iodine, DTAB, and TMSOI for blending with melamine-formaldehyde-polyvinylpyrrolidone polymer resin illustrated with SEM. Journal of Applied Polymer Science, 2010, 118, n/a-n/a.	2.6	3
29	Synthesis of Potential Bioactive Novel 7â€[2â€Hydroxyâ€3â€(1,2,3â€triazolâ€1â€yl)propyloxy]â€3â€alkylâ€4â€a Journal of Heterocyclic Chemistry, 2015, 52, 1-14.	methylcou 2.6	ımarins.
30	Biocatalytic Synthesis of Novel Partial Esters of a Bioactive Dihydroxy 4-Methylcoumarin by Rhizopus oryzae Lipase (ROL). Molecules, 2016, 21, 1499.	3.8	3
31	Kinetics and mechanism of the alkali-catalyzed p-cresol–formaldehyde reaction. Journal of Applied Polymer Science, 1979, 23, 3575-3581.	2.6	2
32	Energetics of the Acid-Catalyzed o-Cresol-Formaldehyde Reaction. Journal of Macromolecular Science Part A, Chemistry, 1984, 21, 1363-1374.	0.3	0
33	Evaluation of thermodynamic functions for complexation reactions involving bivalent metal ions and ethyl-2,3-dioxobutyrate-2p-bromophenylhydrazone. Journal of Chemical Sciences, 1992, 104, 543-547.	1.5	0