Edgar Huitema

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
2	The C-terminal half ofPhytophthora infestansRXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death inNicotiana benthamiana. Plant Journal, 2006, 48, 165-176.	5.7	402
3	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	9.6	391
4	EST Mining and Functional Expression Assays Identify Extracellular Effector Proteins From the Plant Pathogen Phytophthora. Genome Research, 2003, 13, 1675-1685.	5.5	333
5	Ancient class of translocated oomycete effectors targets the host nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17421-17426.	7.1	326
6	The oomycete broadâ€hostâ€range pathogen <i>Phytophthora capsici</i> . Molecular Plant Pathology, 2012, 13, 329-337.	4.2	319
7	A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B. Journal of Biological Chemistry, 2004, 279, 26370-26377.	3.4	301
8	<i>Phytophthora infestans</i> effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20832-20837.	7.1	285
9	Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen <i>Phytophthora capsici</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1350-1360.	2.6	264
10	Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site. Cell, 2006, 124, 1025-1037.	28.9	187
11	Ten things to know about oomycete effectors. Molecular Plant Pathology, 2009, 10, 795-803.	4.2	185
12	Resistance to oomycetes: a general role for the hypersensitive response?. Trends in Plant Science, 1999, 4, 196-200.	8.8	183
13	Synergistic Interactions of the Plant Cell Death Pathways Induced by Phytophthora infestans Nep1-Like Protein PiNPP1.1 and INF1 Elicitin. Molecular Plant-Microbe Interactions, 2006, 19, 854-863.	2.6	178
14	Large-Scale Gene Discovery in the Oomycete Phytophthora infestans Reveals Likely Components of Phytopathogenicity Shared with True Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 229-243.	2.6	160
15	Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity. PLoS ONE, 2013, 8, e59517.	2.5	156
16	Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biology, 2013, 14, R63.	8.8	113
17	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 705-715.	2.1	108
18	Comparative Genome Analysis Provides Insights into the Evolution and Adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS ONE, 2010, 5, e10224.	2.5	104

Edgar Huitema

#	Article	IF	CITATIONS
19	Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Molecular Plant Pathology, 2003, 4, 487-500.	4.2	90
20	Characterization of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus. Frontiers in Plant Science, 2013, 4, 387.	3.6	72
21	A Perspective on CRN Proteins in the Genomics Age: Evolution, Classification, Delivery and Function Revisited. Frontiers in Plant Science, 2017, 8, 99.	3.6	66
22	Linking sequence to phenotype in Phytophthora–plant interactions. Trends in Microbiology, 2004, 12, 193-200.	7.7	65
23	Differences in Intensity and Specificity of Hypersensitive Response Induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. Molecular Plant-Microbe Interactions, 2005, 18, 183-193.	2.6	56
24	Protein mislocalization in plant cells using a GFPâ€binding chromobody. Plant Journal, 2009, 60, 744-754.	5.7	51
25	Variation in structure and activity among elicitins from Phytophthora sojae. Molecular Plant Pathology, 2003, 4, 119-124.	4.2	45
26	Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytologist, 2019, 221, 1634-1648.	7.3	43
27	Agrosuppression: A Bioassay for the Hypersensitive Response Suited to High-Throughput Screening. Molecular Plant-Microbe Interactions, 2003, 16, 7-13.	2.6	40
28	Effector-triggered post-translational modifications and their role in suppression of plant immunity. Frontiers in Plant Science, 2012, 3, 160.	3.6	32
29	Protein localization and dynamics within a bacterial organelle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5599-5604.	7.1	31
30	Quantitative analysis of the tomato nuclear proteome during <i>Phytophthora capsici</i> infection unveils regulators of immunity. New Phytologist, 2017, 215, 309-322.	7.3	29
31	A Straightforward Protocol for Electro-transformation of Phytophthora capsici Zoospores. Methods in Molecular Biology, 2011, 712, 129-135.	0.9	24
32	Nuclear processes associated with plant immunity and pathogen susceptibility. Briefings in Functional Genomics, 2015, 14, 243-252.	2.7	21
33	DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool. Nucleic Acids Research, 2015, 43, e158-e158.	14.5	20
34	From sequence to phenotype: functional genomics of <i>Phytophthora</i> . Canadian Journal of Plant Pathology, 2002, 24, 6-9.	1.4	19
35	An NMRA-Like Protein Regulates Gene Expression in <i>Phytophthora capsici</i> to Drive the Infection Cycle on Tomato. Molecular Plant-Microbe Interactions, 2018, 31, 665-677.	2.6	19
36	A Conserved Oomycete CRN Effector Targets Tomato TCP14-2 to Enhance Virulence. Molecular Plant-Microbe Interactions, 2021, 34, 309-318.	2.6	17

Edgar Huitema

#	Article	IF	CITATIONS
37	Random mutagenesis screen shows that <i>Phytophthora capsici</i> CRN83_152â€mediated cell death is not required for its virulence function(s). Molecular Plant Pathology, 2018, 19, 1114-1126.	4.2	14
38	<i>In planta</i> Expression of Oomycete and Fungal Genes. , 2007, 354, 35-44.		12
39	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 1015-1015.	2.1	11
40	Combined ESTs from Plant–Microbe Interactions: Using GC Counting to Determine the Species of Origin. , 2003, 236, 79-84.		7
41	Effector–Decoy Pairs: Another Countermeasure Emerging during Host–Microbe Co-evolutionary Arms Races?. Molecular Plant, 2017, 10, 662-664.	8.3	3
42	Virulence strategies of an insect herbivore and oomycete plant pathogen converge on host E3 SUMO ligase SIZ1. New Phytologist, 2022, 235, 1599-1614.	7.3	3
43	A myxobacterial S-motility protein dances with poles. Trends in Microbiology, 2006, 14, 247-248.	7.7	2
44	Break on through to the other side: outer membrane penetration of the nascent flagellum by a stop-polymerization mechanism. Genes and Development, 2007, 21, 2253-2257.	5.9	0