
Nicholas P Van Der Meulen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/515568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promising Prospects for ⁴⁴ Sc-/ ⁴⁷ Sc-Based Theragnostics: Application of ⁴⁷ Sc for Radionuclide Tumor Therapy in Mice. Journal of Nuclear Medicine, 2014, 55, 1658-1664.	5.0	163
2	44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Research, 2017, 7, 9.	2.5	140
3	Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. British Journal of Radiology, 2018, 91, 20180074.	2.2	120
4	Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1919-1930.	6.4	109
5	Cyclotron production of 44Sc: From bench to bedside. Nuclear Medicine and Biology, 2015, 42, 745-751.	0.6	91
6	Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharmacy and Chemistry, 2017, 1, 5.	3.9	72
7	Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with ¹⁵² Tb-DOTATOC. Dalton Transactions, 2017, 46, 14638-14646.	3.3	61
8	Measurement of 43Sc and 44Sc production cross-section with an 18 MeV medical PET cyclotron. Applied Radiation and Isotopes, 2017, 129, 96-102.	1.5	61
9	Future prospects for SPECT imaging using the radiolanthanide terbium-155 — production and preclinical evaluation in tumor-bearing mice. Nuclear Medicine and Biology, 2014, 41, e58-e65.	0.6	60
10	47Sc as useful β–-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. EJNMMI Radiopharmacy and Chemistry, 2017, 2, 5.	3.9	60
11	Therapeutic Radiometals Beyond ¹⁷⁷ Lu and ⁹⁰ Y: Production and Application of Promising α-Particle, β ^Ⱂ -Particle, and Auger Electron Emitters. Journal of Nuclear Medicine, 2017, 58, 91S-96S.	5.0	58
12	Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 12.	3.9	56
13	44Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations. EJNMMI Radiopharmacy and Chemistry, 2017, 1, 8.	3.9	53
14	First-in-Human PET/CT Imaging of Metastatic Neuroendocrine Neoplasms with Cyclotron-Produced ⁴⁴ Sc-DOTATOC: A Proof-of-Concept Study. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32, 124-132.	1.0	52
15	Radiometals for imaging and theranostics, current production, and future perspectives. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 615-634.	1.0	49
16	Alpha-PET for Prostate Cancer: Preclinical investigation using 149Tb-PSMA-617. Scientific Reports, 2019, 9, 17800.	3.3	49
17	Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharmacy and Chemistry, 2017, 2, 14.	3.9	45
18	Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate. EJNMMI Research, 2016, 6, 13.	2.5	43

#	Article	IF	CITATIONS
19	Imaging quality of 44Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Applied Radiation and Isotopes, 2016, 110, 129-133.	1.5	43
20	First-in-Humans Application of ¹⁶¹ Tb: A Feasibility Study Using ¹⁶¹ Tb-DOTATOC. Journal of Nuclear Medicine, 2021, 62, 1391-1397.	5.0	42
21	⁶⁴ Cu- and ⁶⁸ Ga-Based PET Imaging of Folate Receptor-Positive Tumors: Development and Evaluation of an Albumin-Binding NODAGA–Folate. Molecular Pharmaceutics, 2016, 13, 1979-1987.	4.6	41
22	Preclinical in vivo application of 152Tb-DOTANOC: a radiolanthanide for PET imaging. EJNMMI Research, 2016, 6, 35.	2.5	40
23	Preclinical investigations and first-in-human application of 152Tb-PSMA-617 for PET/CT imaging of prostate cancer. EJNMMI Research, 2019, 9, 68.	2.5	39
24	Developments toward the Implementation of 44Sc Production at a Medical Cyclotron. Molecules, 2020, 25, 4706.	3.8	38
25	A Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules, 2020, 25, 966.	3.8	36
26	Studies of the effect of tracer activity on time-averaged positron emission particle tracking measurements on tumbling mills at PEPT Cape Town. Minerals Engineering, 2011, 24, 261-266.	4.3	35
27	Combination of terbium-161 with somatostatin receptor antagonists—a potential paradigm shift for the treatment of neuroendocrine neoplasms. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1113-1126.	6.4	32
28	From Bench to Bedside—The Bad Berka Experience With First-in-Human Studies. Seminars in Nuclear Medicine, 2019, 49, 422-437.	4.6	30
29	Design and Preclinical Evaluation of an Albumin-Binding PSMA Ligand for ⁶⁴ Cu-Based PET Imaging. Molecular Pharmaceutics, 2018, 15, 5556-5564.	4.6	28
30	Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors. Nuclear Medicine and Biology, 2017, 45, 15-21.	0.6	26
31	Positron emission particle tracking measurements with 50 micron tracers. Chemical Engineering Science, 2012, 75, 235-242.	3.8	25
32	Determination of 161Tb half-life by three measurement methods. Applied Radiation and Isotopes, 2020, 159, 109085.	1.5	25
33	Cyclotron production and radiochemical purification of terbium-155 for SPECT imaging. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 37.	3.9	25
34	Therapeutic Potential of 47Sc in Comparison to 177Lu and 90Y: Preclinical Investigations. Pharmaceutics, 2019, 11, 424.	4.5	24
35	CERN-MEDICIS: A Review Since Commissioning in 2017. Frontiers in Medicine, 2021, 8, 693682.	2.6	22
36	Dosimetric Analysis of the Short-Ranged Particle Emitter 161Tb for Radionuclide Therapy of Metastatic Prostate Cancer. Cancers, 2021, 13, 2011.	3.7	19

#	Article	IF	CITATIONS
37	Cross section measurement of terbium radioisotopes for an optimized 155Tb production with an 18 MeV medical PET cyclotron. Applied Radiation and Isotopes, 2022, 184, 110175.	1.5	18
38	The production of 88Y in the proton bombardment of natSr: New excitation and separation studies. Applied Radiation and Isotopes, 2009, 67, 1320-1323.	1.5	17
39	Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice. EJNMMI Research, 2019, 9, 53.	2.5	17
40	Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging. Pharmaceutics, 2021, 13, 536.	4.5	17
41	New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers, 2021, 13, 6183.	3.7	16
42	Radiochemical separation of 88Y from a SrCl2 target using chelating resin Chelex 100. Journal of Radioanalytical and Nuclear Chemistry, 2006, 270, 641-643.	1.5	14
43	Implementation of a new separation method to produce qualitatively improved <scp>⁶⁴Cu</scp> . Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 460-470.	1.0	14
44	Expanding the Scope of Pyclen-Picolinate Lanthanide Chelates to Potential Theranostic Applications. Inorganic Chemistry, 2020, 59, 11736-11748.	4.0	14
45	165Er: A new candidate for Auger electron therapy and its possible cyclotron production from natural holmium targets. Applied Radiation and Isotopes, 2020, 159, 109079.	1.5	14
46	In Vivo Imaging of Local Inflammation: Monitoring LPS-Induced CD80/CD86 Upregulation by PET. Molecular Imaging and Biology, 2021, 23, 196-207.	2.6	12
47	Production of Mass-Separated Erbium-169 Towards the First Preclinical in vitro Investigations. Frontiers in Medicine, 2021, 8, 643175.	2.6	11
48	Fifty Shades of Scandium: Comparative Study of PET Capabilities Using Sc-43 and Sc-44 with Respect to Conventional Clinical Radionuclides. Diagnostics, 2021, 11, 1826.	2.6	10
49	The use of selective volatization in the separation of 68Ge from irradiated Ga targets. Applied Radiation and Isotopes, 2011, 69, 727-731.	1.5	9
50	In Vivo Labeling of Plasma Proteins for Imaging of Enhanced Vascular Permeability in the Lungs. Molecular Pharmaceutics, 2018, 15, 4995-5004.	4.6	9
51	Measurement of the 43Sc production cross-section with a deuteron beam. Applied Radiation and Isotopes, 2019, 145, 205-208.	1.5	9
52	Separation of 103Pd from Rh and Ag by the macroporous AG MP-1 anion exchange resin in Ag targets. Journal of Radioanalytical and Nuclear Chemistry, 2003, 256, 31-35.	1.5	5
53	First Phantom-Based Quantitative Assessment of Scandium-44 Using a Commercial PET Device. Frontiers in Physics, 2020, 8, .	2.1	5
54	Activity standardisation of 161Tb. Applied Radiation and Isotopes, 2020, 166, 109411.	1.5	5

#	Article	IF	CITATIONS
55	The Metamorphosis of Radionuclide Production and Development at Paul Scherrer Institute. Chimia, 2022, 74, 968.	0.6	5
56	Targeted Radiotherapeutics from 'Bench-to-Bedside'. Chimia, 2022, 74, 939.	0.6	5
57	Precise activity measurements of medical radionuclides using an ionization chamber: a case study with Terbium-161. EJNMMI Physics, 2022, 9, 19.	2.7	5
58	Chelation of Theranostic Copper Radioisotopes with S-Rich Macrocycles: From Radiolabelling of Copper-64 to In Vivo Investigation. Molecules, 2022, 27, 4158.	3.8	5
59	The isolation of 133Ba produced by proton-induced reactions on Cs using cation exchange chromatography. Journal of Radioanalytical and Nuclear Chemistry, 2010, 285, 491-498.	1.5	4
60	Combination of Proton Therapy and Radionuclide Therapy in Mice: Preclinical Pilot Study at the Paul Scherrer Institute. Pharmaceutics, 2019, 11, 450.	4.5	4
61	Determination of the gamma and X-ray emission intensities of erbium-169. Applied Radiation and Isotopes, 2021, 176, 109823.	1.5	4
62	Concurrent spectrometry of annihilation radiation and characteristic gamma-rays for activity assessment of selected positron emitters. Applied Radiation and Isotopes, 2017, 129, 76-86.	1.5	3
63	High Efficiency Cyclotron Trap Assisted Positron Moderator. Instruments, 2018, 2, 10.	1.8	3
64	Determination of the gamma and X-ray emission intensities of terbium-161. Applied Radiation and Isotopes, 2021, 174, 109770.	1.5	3
65	Ytterbium-175 half-life determination. Applied Radiation and Isotopes, 2021, 176, 109893.	1.5	3
66	Production of 1111n from an In/In2O3 target. Radiochimica Acta, 2005, 93, 575-577.	1.2	1
67	Production of 28Mg by bombardment of natCl with 200 MeV protons: Proof-of-concept study for a stacked LiCl target. Applied Radiation and Isotopes, 2016, 115, 125-132.	1.5	1
68	Non-conventional radionuclides: The pursuit for perfection. , 2022, , 133-142.		1
69	Terbium radionuclides for theranostics. , 2021, , .		0