Dean C Webster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155645/publications.pdf

Version: 2024-02-01

81839 74108 6,500 151 39 75 citations g-index h-index papers 156 156 156 5393 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lowâ€unsaturated soybean oils in EPDM rubber compounds. Journal of Applied Polymer Science, 2022, 139, 51499.	1.3	1
2	Amphiphilic marine coating systems of self-stratified PDMS-PEG surfaces with an epoxy-polyurethane matrix. Journal of Coatings Technology Research, 2022, 19, 795-812.	1.2	3
3	Self-Assembled Nanostructures from Amphiphilic Sucrose-Soyates for Solubilizing Hydrophobic Guest Molecules. Langmuir, 2022, 38, 2066-2075.	1.6	6
4	Durable siloxane-polyurethane coatings for mitigating freshwater mussel fouling. Biofouling, 2022, 38, 260-270.	0.8	4
5	Towards Upcycling Biomassâ€Derived Crosslinked Polymers with Light. Angewandte Chemie, 2022, 134, .	1.6	2
6	Towards Upcycling Biomassâ€Derived Crosslinked Polymers with Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
7	Grooming of fouling-release coatings to control marine fouling and determining how grooming affects the surface. Biofouling, 2022, 38, 384-400.	0.8	4
8	Poly (vinyl ethers) based on the biomass-derived compound, eugenol, and their one-component, ambient-cured surface coatings. Progress in Organic Coatings, 2022, 170, 106996.	1.9	7
9	Amphiphilically modified self-stratified siloxane-glycidyl carbamate coatings for anti-icing applications. Journal of Coatings Technology Research, 2021, 18, 83-97.	1.2	10
10	Glycidyl carbamate functional resins and their applications: a review. Polymer International, 2021, 70, 710-719.	1.6	8
11	Critical Amphiphilic Concentration: Effect of the Extent of Amphiphilicity on Marine Fouling-Release Performance. Langmuir, 2021, 37, 2728-2739.	1.6	14
12	Comparison of epoxidation methods for biobased oils: dioxirane intermediates generated from Oxone <i>versus</i> peracid derived from hydrogen peroxide. Polymer International, 2021, 70, 594-603.	1.6	5
13	Parallel esterification of bioâ€based dicarboxylic acids in small scale film reactors: A h igh―t hroughput study. Journal of Polymer Science, 2021, 59, 665-674.	2.0	1
14	Surface modifying amphiphilic additives and their effect on the fouling-release performance of siloxane-polyurethane coatings. Biofouling, 2021, 37, 309-326.	0.8	12
15	Novel bio-based epoxy resins from eugenol as an alternative to BPA epoxy and high throughput screening of the cured coatings. Polymer, 2021, 233, 124191.	1.8	28
16	Star-shaped Poly(hydroxybutyrate)s from bio-based polyol cores via zinc catalyzed ring-opening polymerization of Î ² -Butyrolactone. European Polymer Journal, 2021, 160, 110756.	2.6	2
17	DERIVATIZATION OF SOYBEAN OIL TO ENHANCE PERFORMANCE AS A PROCESSING OIL IN SBR-BASED RUBBER COMPOUNDS. Rubber Chemistry and Technology, 2021, 94, 234-247.	0.6	2
18	Bio-Based Furanic Di(meth)acrylates as Reactive Diluents for UV Curable Coatings: Synthesis and Coating Evaluation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15537-15544.	3.2	12

#	Article	IF	CITATIONS
19	Amphiphilic zwitterionic-PDMS-based surface-modifying additives to tune fouling-release of siloxane-polyurethane marine coatings. Progress in Organic Coatings, 2020, 149, 105931.	1.9	21
20	Use of high throughput screening methods to study dual-functional crosslinkable latexes. Progress in Organic Coatings, 2020, 149, 105898.	1.9	2
21	Novel Biobased Furanic Diols as Potential Alternatives to BPA: Synthesis and Endocrine Activity Screening. ACS Sustainable Chemistry and Engineering, 2020, 8, 18824-18829.	3.2	14
22	Exploration of Bio-Based Functionalized Sucrose Ester Resins for Additive Manufacturing via Stereolithography. ACS Applied Polymer Materials, 2020, 2, 2910-2918.	2.0	13
23	Biobased Carboxylic Acids as Components of Sustainable and High-Performance Coating Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 5750-5762.	3.2	7
24	A Preliminary Environmental Assessment of Epoxidized Sucrose Soyate (ESS)-Based Biocomposite. Molecules, 2020, 25, 2797.	1.7	11
25	Frontal Polymerization of a Thin Film on a Wood Substrate. ACS Macro Letters, 2020, 9, 169-173.	2.3	16
26	Biobased, Nonisocyanate, 2K Polyurethane Coatings Produced from Polycarbamate and Dialdehyde Cross-linking. ACS Sustainable Chemistry and Engineering, 2019, 7, 19621-19630.	3.2	20
27	Catalyzed non-isocyanate polyurethane (NIPU) coatings from bio-based poly(cyclic carbonates). Journal of Coatings Technology Research, 2019, 16, 41-57.	1.2	36
28	Modified Soybean Oil as a Processing Oil for Styrene-Butadiene Rubber Tire Tread Compounds. Tire Science and Technology, 2019, 47, 280-291.	0.3	5
29	High performance bio-based thermosets from dimethacrylated epoxidized sucrose soyate (DMESS). European Polymer Journal, 2018, 99, 202-211.	2.6	22
30	Catalyst-free lignin valorization by acetoacetylation. Structural elucidation by comparison with model compounds. Green Chemistry, 2018, 20, 2959-2966.	4.6	19
31	Survey of several catalytic systems for the epoxidation of a biobased ester sucrose soyate. Catalysis Communications, 2018, 111, 31-35.	1.6	3
32	Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science, 2018, 76, 65-110.	11.8	257
33	Photoacidity of vanillin derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 38-41.	2.0	5
34	Soysome: A Surfactant-Free, Fully Biobased, Self-Assembled Platform for Nanoscale Drug Delivery Applications. ACS Applied Bio Materials, 2018, 1, 1830-1841.	2.3	9
35	Biobased poly(vinyl ether)s derived from soybean oil, linseed oil, and camelina oil: Synthesis, characterization, and properties of crosslinked networks and surface coatings. Progress in Organic Coatings, 2018, 125, 453-462.	1.9	29
36	Renewable Reactive Diluents as Practical Styrene Replacements in Biobased Vinyl Ester Thermosets. ACS Sustainable Chemistry and Engineering, 2018, 6, 12586-12592.	3.2	27

3

#	Article	IF	CITATIONS
37	Effect of nature and extent of functional group modification on properties of thermosets from methacrylated epoxidized sucrose soyate. Reactive and Functional Polymers, 2018, 128, 29-39.	2.0	9
38	Soy-Based Soft Matrices for Encapsulation and Delivery of Hydrophilic Compounds. Polymers, 2018, 10, 583.	2.0	3
39	Furfural-Derived Diacid Prepared by Photoreaction for Sustainable Materials Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 8136-8141.	3.2	25
40	The potential of natural composite materials in structural design. , 2018, , 269-291.		6
41	Highly functional methacrylated bio-based resins for UV-curable coatings. Progress in Organic Coatings, 2018, 122, 219-228.	1.9	30
42	The exploration of Michael-addition reaction chemistry to create high performance, ambient cure thermoset coatings based on soybean oil. Progress in Organic Coatings, 2017, 108, 59-67.	1.9	30
43	Epoxidized sucrose soyate—A novel green resin for crop straw based low density fiberboards. Industrial Crops and Products, 2017, 107, 400-408.	2.5	22
44	Curing kinetics of bio-based epoxy-anhydride thermosets with zinc catalyst. Journal of Thermal Analysis and Calorimetry, 2017, 130, 2133-2144.	2.0	11
45	Amphiphilic icephobic coatings. Progress in Organic Coatings, 2017, 112, 191-199.	1.9	31
46	Poly(ethylene) glycol-modified, amphiphilic, siloxane–polyurethane coatings and their performance as fouling-release surfaces. Journal of Coatings Technology Research, 2017, 14, 307-322.	1.2	54
47	Effect of solvents on the curing and properties of fully bio-based thermosets for coatings. Journal of Coatings Technology Research, 2017, 14, 367-375.	1.2	34
48	Life cycle assessment of photodegradable polymeric material derived from renewable bioresources. Journal of Cleaner Production, 2017, 142, 2935-2944.	4.6	37
49	Development and weatherability of bio-based composites of structural quality using flax fiber and epoxidized sucrose soyate. Materials and Design, 2017, 113, 17-26.	3.3	26
50	Bio-Based Resin Reinforced with Flax Fiber as Thermorheologically Complex Materials. Polymers, 2016, 8, 153.	2.0	29
51	Advanced biocomposite from highly functional methacrylated epoxidized sucrose soyate (MAESS) resin derived from vegetable oil and fiberglass fabric for composite applications. European Polymer Journal, 2016, 79, 63-71.	2.6	23
52	Hard and Flexible, Degradable Thermosets from Renewable Bioresources with the Assistance of Water and Ethanol. Macromolecules, 2016, 49, 3780-3788.	2.2	146
53	Fouling-Release Performance of Silicone Oil-Modified Siloxane-Polyurethane Coatings. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29025-29036.	4.0	115
54	Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings. Biofouling, 2016, 32, 949-968.	0.8	25

#	Article	IF	Citations
55	Bio-based high performance epoxy-anhydride thermosets for structural composites: The effect of composition variables. Reactive and Functional Polymers, 2016, 105, 140-149.	2.0	43
56	An ⟨i⟩in situ⟨ i⟩ intercalative polymerization method for preparing ⟨scp⟩UV⟨ scp⟩ curable clay–polymer nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
57	Pilot scale (10kg) production and characterization of epoxidized sucrose soyate. Industrial Crops and Products, 2015, 74, 987-997.	2.5	22
58	A small-scale waterjet test method for screening novel foul-release coatings. Journal of Coatings Technology Research, 2015, 12, 533-542.	1.2	11
59	Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis for Industrial Scale Production. Organic Process Research and Development, 2015, 19, 1683-1692.	1.3	17
60	Naturally Occurring Acids as Cross-Linkers To Yield VOC-Free, High-Performance, Fully Bio-Based, Degradable Thermosets. Macromolecules, 2015, 48, 7127-7137.	2.2	160
61	Programmed Photodegradation of Polymeric/Oligomeric Materials Derived from Renewable Bioresources. Angewandte Chemie - International Edition, 2015, 54, 1159-1163.	7.2	104
62	Zwitterionic siloxane-polyurethane fouling-release coatings. Progress in Organic Coatings, 2015, 78, 369-380.	1.9	74
63	Thermosets from highly functional methacrylated epoxidized sucrose soyate. Green Materials, 2014, 2, 132-143.	1.1	27
64	Thermoset Coatings from Epoxidized Sucrose Soyate and Blocked, Bioâ€Based Dicarboxylic Acids. ChemSusChem, 2014, 7, 2289-2294.	3.6	57
65	Utilization of Flax Fibers and Glass Fibers in a Bio-Based Resin. , 2014, , .		2
66	Catalyzed crosslinking of highly functional biobased epoxy resins. Journal of Coatings Technology Research, 2013, 10, 589-600.	1.2	24
67	Linear glycidyl carbamate (GC) resins for highly flexible coatings. Journal of Coatings Technology Research, 2013, 10, 141-151.	1.2	4
68	Preliminary investigation of the impact of polymer composition on electrochemical properties of coatings as determined by electrochemical impedance spectroscopy. Journal of Coatings Technology Research, 2013, 10, 865-878.	1.2	21
69	Monomer-grafted sucrose ester resins. Journal of Coatings Technology Research, 2013, 10, 515-525.	1.2	6
70	Highly functional biobased polyols and their use in melamine–formaldehyde coatings. Journal of Coatings Technology Research, 2013, 10, 757-767.	1.2	23
71	Polymer/clay nanocomposite plasticization: Elucidating the influence of quaternary alkylammonium organic modifiers. Journal of Applied Polymer Science, 2013, 129, 324-333.	1.3	12
72	Synthesis and characterization of novel polysiloxane based ABA-type triblock copolymers using ATRP. E-Polymers, 2013, 13, .	1.3	3

#	Article	IF	Citations
73	Bio-Based High Functionality Polyols and Their Use in 1K Polyurethane Coatings. Journal of Renewable Materials, 2013, 1, 141-153.	1.1	22
74	An improved laboratory reattachment method for the rapid assessment of adult barnacle adhesion strength to fouling-release marine coatings. Journal of Coatings Technology Research, 2012, 9, 651-665.	1.2	27
75	Thiourethane thermoset coatings from bio-based thiols. Polymer International, 2012, 61, 602-608.	1.6	23
76	Novel <i>in situ</i> synthesis in the preparation of ultravioletâ€eurable nanocomposite barrier coatings. Journal of Applied Polymer Science, 2012, 125, 3836-3848.	1.3	20
77	New Biobased High Functionality Polyols and Their Use in Polyurethane Coatings. ChemSusChem, 2012, 5, 419-429.	3.6	97
78	The effect of formulation variables on fouling-release performance of stratified siloxane–polyurethane coatings. Journal of Coatings Technology Research, 2012, 9, 235-249.	1.2	43
79	Novel biobased dual-cure coating system. Progress in Organic Coatings, 2012, 73, 344-354.	1.9	21
80	UV curable glycidyl carbamate based resins. Progress in Organic Coatings, 2012, 73, 19-25.	1.9	19
81	Polyurethanes with amphiphilic surfaces made using telechelic functional PDMS having orthogonal acid functional groups. Progress in Organic Coatings, 2012, 75, 38-48.	1.9	51
82	Conductive Adhesives From Low-VOC Silver Inks for Advanced Microelectronics Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 69-75.	1.4	5
83	High Biobased Content Epoxy–Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids. Biomacromolecules, 2011, 12, 2416-2428.	2.6	197
84	Novel biobased epoxy compounds: epoxidized sucrose esters of fatty acids. Green Chemistry, 2011, 13, 965.	4.6	118
85	Effects of pigmentation on siloxane–polyurethane coatings and their performance as fouling-release marine coatings. Journal of Coatings Technology Research, 2011, 8, 661-670.	1.2	27
86	Novel water-dispersible glycidyl carbamate (GC) resins and waterborne amine-cured coatings. Journal of Coatings Technology Research, 2011, 8, 735-747.	1.2	12
87	Block Copolymer Synthesis via a Combination of ATRP and RAFT Using Click Chemistry. Macromolecular Chemistry and Physics, 2011, 212, 539-549.	1.1	19
88	Cationic UVâ€Curable Conductive Composites from Exfoliated Graphite. Macromolecular Materials and Engineering, 2011, 296, 70-82.	1.7	13
89	Impact of Structure and Functionality of Core Polyol in Highly Functional Biobased Epoxy Resins. Macromolecular Rapid Communications, 2011, 32, 1324-1330.	2.0	59
90	Synthesis of Soybean Oilâ€Based Thiol Oligomers. ChemSusChem, 2011, 4, 1135-1142.	3.6	27

#	Article	IF	CITATIONS
91	Novel tailor-made diols for polyurethane coatings using a combination of controlled radical polymerization, ring opening polymerization, and click chemistry. Journal of Coatings Technology Research, 2010, 7, 409-417.	1.2	9
92	Soy-based UV-curable thiol–ene coatings. Journal of Coatings Technology Research, 2010, 7, 603-613.	1.2	65
93	The influence of structural modification and composition of glycidyl carbamate resins on their viscosity and coating performance. Journal of Coatings Technology Research, 2010, 7, 531-546.	1.2	9
94	Thermal stability of magnesium-rich primers based on glycidyl carbamate resins. Polymer Degradation and Stability, 2010, 95, 1160-1166.	2.7	7
95	A preliminary study on the properties and fouling-release performance of siloxane–polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers. Biofouling, 2010, 26, 961-972.	0.8	161
96	Polymer Libraries: Preparation and Applications. Advances in Polymer Science, 2009, , 1-15.	0.4	13
97	Organic–inorganic hybrid coatings prepared from glycidyl carbamate resin, 3-aminopropyl trimethoxy silane and tetraethoxyorthosilicate. Progress in Organic Coatings, 2009, 64, 128-137.	1.9	59
98	Study of epoxidized-cardanol containing cationic UV curable materials. Progress in Organic Coatings, 2009, 65, 246-250.	1.9	39
99	Hybrid coatings from novel silane-modified glycidyl carbamate resins and amine crosslinkers. Progress in Organic Coatings, 2009, 66, 73-85.	1.9	30
100	Parallel Synthesis of Polymer Libraries Using Atom Transfer Radical Polymerization (ATRP). Macromolecular Chemistry and Physics, 2009, 210, 640-650.	1.1	12
101	Automated parallel polyurethane dispersion synthesis and characterization. Journal of Coatings Technology Research, 2009, 6, 1-10.	1.2	16
102	Combinatorial materials research applied to the development of new surface coatings XII: Novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. Journal of Coatings Technology Research, 2009, 6, 107-121.	1.2	25
103	A new approach to 3-miktoarm star polymers using a combination of reversible addition–fragmentation chain transfer (RAFT) and ring opening polymerization (ROP) via "Click― chemistry. Polymer, 2009, 50, 2768-2774.	1.8	74
104	Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 2009, 34, 1068-1133.	11.8	1,366
105	A humidity blocker approach to overcoming the humidity interference with cationic photopolymerization. Journal of Polymer Science Part A, 2008, 46, 4344-4351.	2.5	9
106	Combinatorial and Highâ€Throughput Methods in Macromolecular Materials Research and Development. Macromolecular Chemistry and Physics, 2008, 209, 237-246.	1.1	64
107	Organic–inorganic hybrid coatings prepared from glycidyl carbamate resins and amino-functional silanes. Progress in Organic Coatings, 2008, 63, 405-415.	1.9	31
108	Automated Image-Based Method for Laboratory Screening of Coating Libraries for Adhesion of Algae and Bacterial Biofilms. ACS Combinatorial Science, 2008, 10, 586-594.	3.3	14

#	Article	IF	CITATIONS
109	Combinatorial materials research applied to the development of new surface coatings VII: An automated system for adhesion testing. Review of Scientific Instruments, 2007, 78, 072213.	0.6	19
110	Combinatorial materials research applied to the development of new surface coatings IV. A high-throughput bacterial biofilm retention and retraction assay for screening fouling-release performance of coatings. Biofouling, 2007, 23, 45-54.	0.8	62
111	Combinatorial and High-Throughput Screening of the Effect of Siloxane Composition on the Surface Properties of Crosslinked Siloxaneâ 'Polyurethane Coatings. ACS Combinatorial Science, 2007, 9, 178-188.	3.3	65
112	Thermoset Siloxane-Urethane Fouling Release Coatings. ACS Symposium Series, 2007, , 61-75.	0.5	19
113	Mini-review: Combinatorial approaches for the design of novel coating systems. Biofouling, 2007, 23, 179-192.	0.8	53
114	Laboratory screening of coating libraries for algal adhesion. Biofouling, 2007, 23, 267-276.	0.8	46
115	Synthesis and Characterization of Novel Epoxy- and Oxetane-Functional Reversible Additionâ^'Fragmentation Chain Transfer Agents. Macromolecules, 2007, 40, 8586-8592.	2.2	31
116	Properties of nanocomposites based on maleate-vinyl ether donor—acceptor UV-curable systems. Journal of Applied Polymer Science, 2007, 105, 3378-3390.	1.3	6
117	Combinatorial materials research applied to the development of new surface coatings. Applied Surface Science, 2007, 254, 692-698.	3.1	13
118	Thermosensitive polymers: Synthesis, characterization, and delivery of proteins. International Journal of Pharmaceutics, 2007, 341, 68-77.	2.6	51
119	Surface microtopography in siloxane–polyurethane thermosets: The influence of siloxane and extent of reaction. Polymer, 2007, 48, 7499-7509.	1.8	26
120	Carrier gas UV laser ablation sensitizers for photopolymerized thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 115-126.	2.0	5
121	Study of the effect of hyperbranched polyols on cationic UV curable coating properties. Polymer International, 2007, 56, 754-763.	1.6	25
122	The development of coatings using combinatorial/high throughput methods: a review of the current status. Journal of Coatings Technology Research, 2007, 4, 1-12.	1.2	41
123	High throughput combinatorial characterization of thermosetting siloxane–urethane coatings having spontaneously formed microtopographical surfaces. Journal of Coatings Technology Research, 2007, 4, 131-138.	1.2	63
124	Combinatorial approach to study the effect of acrylic polyol composition on the properties of crosslinked siloxane-polyurethane fouling-release coatings. Journal of Coatings Technology Research, 2007, 4, 453-461.	1,2	54
125	Synthesis, formulation, and characterization of siloxane–polyurethane coatings for underwater marine applications using combinatorial high-throughput experimentation. Journal of Coatings Technology Research, 2007, 4, 435-451.	1.2	69
126	Synthesis and Characterization of Novel Hydroxyalkyl Carbamate and Dihydroxyalkyl Carbamate Terminated Poly(dimethylsiloxane) Oligomers and Their Block Copolymers with Poly(ε-caprolactone). Macromolecules, 2006, 39, 8659-8668.	2.2	36

#	Article	IF	Citations
127	Synthesis and study of novel polyol-bound photosensitizers for cationic UV-curable systems. Journal of Polymer Science Part A, 2006, 44, 4435-4449.	2.5	9
128	Library synthesis and characterization of 3-aminopropyl-terminated poly(dimethylsiloxane)s and poly(lµ-caprolactone)-b-poly(dimethylsiloxane)s. Journal of Polymer Science Part A, 2006, 44, 4880-4894.	2.5	32
129	UV curable epoxy acrylate–clay nanocomposites. European Polymer Journal, 2006, 42, 2596-2605.	2.6	67
130	Study of cationic UV curing and UV laser ablation behavior of coatings sensitized by novel sensitizers. Polymer, 2006, 47, 3715-3726.	1.8	18
131	Influence of solvent composition and degree of reaction on the formation of surface microtopography in a thermoset siloxane–urethane system. Polymer, 2006, 47, 4172-4181.	1.8	30
132	Effect of polymer composition on performance properties of maleate-vinyl ether donor-acceptor UV-curable systems. Journal of Coatings Technology Research, 2006, 3, 213-219.	1.2	3
133	Optimization of coating film deposition when using an automated high throughput coating application unit. Progress in Organic Coatings, 2006, 56, 169-177.	1.9	8
134	Combinatorial materials research applied to the development of new surface coatings. Progress in Organic Coatings, 2006, 57, 115-122.	1.9	16
135	Synthesis, characterization and self-crosslinking of glycidyl carbamate functional resins. Progress in Organic Coatings, 2006, 57, 128-139.	1.9	35
136	Automated determination of pot life of two-component reactive coatings. Progress in Organic Coatings, 2006, 57, 210-214.	1.9	3
137	Triblock copolymers: synthesis, characterization, and delivery of a model protein. International Journal of Pharmaceutics, 2005, 288, 207-218.	2.6	126
138	Novel polyurethane coating technology through glycidyl carbamate chemistry. Journal of Coatings Technology Research, 2005, 2, 517-527.	1.2	20
139	Preparation of Siloxaneâ^'Urethane Coatings Having Spontaneously Formed Stable Biphasic Microtopograpical Surfaces. Macromolecules, 2005, 38, 5857-5859.	2.2	89
140	Effect of composition on performance properties in cationic UV-curable coating systems. Journal of Coatings Technology Research, 2004, 1, 153-161.	1.2	5
141	Organically modified montmorillonites in UV curable urethane acrylate films. Polymer, 2004, 45, 6175-6187.	1.8	109
142	Polymer Films Possessing Nanoreinforcements via Organically Modified Layered Silicate. Chemistry of Materials, 2004, 16, 1135-1142.	3.2	66
143	Cyclic carbonate functional polymers and their applications. Progress in Organic Coatings, 2003, 47, 77-86.	1.9	160
144	UV Curable Polymers with Organically Modified Clay as the Nanoreinforcements. Materials Research Society Symposia Proceedings, 2003, 788, 11451.	0.1	2

#	Article	IF	CITATION
145	Synthesis of latexes containing diesters of 3-butene-1,2-diol. Progress in Organic Coatings, 2002, 45, 43-48.	1.9	5
146	Synthesis and applications of cyclic carbonate functional polymers in thermosetting coatings. Progress in Organic Coatings, 2000, 40, 275-282.	1.9	99
147	Synthesis of Cyclic Carbonate Functional Polymers. ACS Symposium Series, 1998, , 303-320.	0.5	8
148	Correlation Between Network Mechanical Properties and Physical Properties in Polyester—Urethane Coatings. ACS Symposium Series, 1996, , 222-234.	0.5	6
149	Structureâ€"property relationships in perfectly alternating segmented polysulphone/poly(dimethylsiloxane) copolymers. Polymer, 1988, 29, 833-844.	1.8	24
150	Surface and bulk phase separation in block copolymers and their blends. Polysulfone/polysiloxane. Macromolecules, 1988, 21, 2689-2696.	2.2	111
151	Interfacial Synthesis Part I: Phase-Transfer Catalyzed Synthesis of Polyhydroxy Ether. Journal of Macromolecular Science Part A, Chemistry, 1981, 15, 943-966.	0.4	24