
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boreal forest plants take up organic nitrogen. Nature, 1998, 392, 914-916.	13.7	894
2	Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia, 2001, 129, 125-132.	0.9	250
3	Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio, 2016, 45, 124-139.	2.8	192
4	NITROGEN UPTAKE BY ARCTIC SOIL MICROBES AND PLANTS IN RELATION TO SOIL NITROGEN SUPPLY. Ecology, 2004, 85, 955-962.	1.5	187
5	Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology, 2011, 17, 2743-2753.	4.2	183
6	Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Global Change Biology, 2015, 21, 3169-3180.	4.2	163
7	Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation. Forests, 2014, 5, 557-578.	0.9	142
8	Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. Journal of Ecology, 2002, 90, 61-67.	1.9	131
9	Nitrogen Deposition and the Biodiversity of Boreal Forests: Implications for the Nitrogen Critical Load. Ambio, 2005, 34, 20-24.	2.8	127
10	Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Global Change Biology, 2014, 20, 276-286.	4.2	103
11	Patterns of Plant Biomass Partitioning Depend on Nitrogen Source. PLoS ONE, 2011, 6, e19211.	1.1	92
12	Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. Ambio, 2016, 45, 175-187.	2.8	76
13	Changes in the abundance of keystone forest floor species in response to changes of forest structure. Journal of Vegetation Science, 2013, 24, 296-306.	1.1	72
14	Socio-ecological implications of modifying rotation lengths in forestry. Ambio, 2016, 45, 109-123.	2.8	71
15	Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environmental Pollution, 2006, 141, 167-174.	3.7	69
16	Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. Global Change Biology, 2019, 25, 2900-2914.	4.2	68
17	Commercial forest fertilization causes long-term residual effects in ground vegetation of boreal forests. Forest Ecology and Management, 2008, 256, 2175-2181.	1.4	62
18	The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality. Ambio, 2016, 45, 152-162.	2.8	60

#	Article	IF	CITATIONS
19	Comparison of carbon balances between continuous-cover and clear-cut forestry in Sweden. Ambio, 2016, 45, 203-213.	2.8	56
20	Ecophysiological adjustment of two <i>Sphagnum</i> species in response to anthropogenic nitrogen deposition. New Phytologist, 2009, 181, 208-217.	3.5	50
21	Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution, 2018, 242, 1787-1799.	3.7	49
22	Nitrogen storage forms in nine boreal understorey plant species. Oecologia, 1997, 110, 487-492.	0.9	48
23	Amino acid accumulation and growth of <i>Sphagnum</i> under different levels of N deposition. Ecoscience, 2000, 7, 474-480.	0.6	44
24	Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia, 2014, 175, 457-470.	0.9	42
25	Cultivation of Norway spruce and Scots pine on organic nitrogen improves seedling morphology and field performance. Forest Ecology and Management, 2012, 276, 118-124.	1.4	41
26	The potential role of forest management in Swedish scenarios towards climate neutrality by mid century. Forest Ecology and Management, 2017, 383, 73-84.	1.4	41
27	The impact of simulated chronic nitrogen deposition on the biomass and N ₂ -fixation activity of two boreal feather moss–cyanobacteria associations. Biology Letters, 2013, 9, 20130797.	1.0	40
28	Complex Biotic Interactions Drive Long-Term Vegetation Change in a Nitrogen Enriched Boreal Forest. Ecosystems, 2009, 12, 1204-1211.	1.6	39
29	Compositional changes of forest-floor vegetation in young stands of Norway spruce as an effect of repeated fertilisation. Forest Ecology and Management, 2010, 259, 2418-2425.	1.4	36
30	Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees. Ambio, 2017, 46, 324-334.	2.8	36
31	Understanding consistencies and gaps between desired forest futures: An analysis of visions from stakeholder groups in Sweden. Ambio, 2016, 45, 100-108.	2.8	35
32	Relative contributions of set-asides and tree retention to the long-term availability of key forest biodiversity structures at the landscape scale. Journal of Environmental Management, 2015, 154, 284-292.	3.8	33
33	Low and High Nitrogen Deposition Rates in Northern Coniferous Forests Have Different Impacts on Aboveground Litter Production, Soil Respiration, and Soil Carbon Stocks. Ecosystems, 2020, 23, 1423-1436.	1.6	33
34	Nitrogen deposition and the biodiversity of boreal forests: implications for the nitrogen critical load. Ambio, 2005, 34, 20-4.	2.8	26
35	Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests. Journal of Vegetation Science, 2012, 23, 361-371.	1.1	24
36	Nitrogen enrichment impacts on boreal litter decomposition are driven by changes in soil microbiota rather than litter quality. Scientific Reports, 2017, 7, 4083.	1.6	24

#	Article	IF	CITATIONS
37	Impacts of tree species identity and species mixing on ecosystem carbon and nitrogen stocks in a boreal forest. Forest Ecology and Management, 2020, 458, 117783.	1.4	24
38	Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia. Forests, 2014, 5, 2106-2121.	0.9	23
39	Residual Long-Term Effects of Forest Fertilization on Tree Growth and Nitrogen Turnover in Boreal Forest. Forests, 2015, 6, 1145-1156.	0.9	23
40	Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species. Journal of Environmental Management, 2018, 210, 1-9.	3.8	23
41	Productivity of Scots pine and Norway spruce in central Sweden and competitive release in mixtures of the two species. Forest Ecology and Management, 2018, 429, 287-293.	1.4	22
42	Carbon balance in production forestry in relation to rotation length. Canadian Journal of Forest Research, 2018, 48, 672-678.	0.8	21
43	Impacts of global climate change mitigation scenarios on forests and harvesting in Sweden. Canadian Journal of Forest Research, 2016, 46, 1427-1438.	0.8	19
44	Tradeâ€offs in the multiâ€use potential of managed boreal forests. Journal of Applied Ecology, 2018, 55, 958-966.	1.9	18
45	Chronic Nitrogen Deposition Has a Minor Effect on the Quantity and Quality of Aboveground Litter in a Boreal Forest. PLoS ONE, 2016, 11, e0162086.	1.1	16
46	Carbon benefits from Forest Transitions promoting biomass expansions and thickening. Global Change Biology, 2020, 26, 5365-5370.	4.2	16
47	Policy goals and instruments for achieving a desirable future forest: Experiences from backcasting with stakeholders in Sweden. Forest Policy and Economics, 2020, 111, 102051.	1.5	14
48	Nitrogen uptake by <i>Hylocomium splendens</i> during snowmelt in a boreal forest. Ecoscience, 2008, 15, 315-319.	0.6	13
49	Decreased variation of forest understory vegetation is an effect of fertilisation in young stands of <i>Picea abies</i> . Scandinavian Journal of Forest Research, 2011, 26, 46-55.	0.5	13
50	Interplay between N-form and N-dose influences ecosystem effects of N addition to boreal forest. Plant and Soil, 2018, 423, 385-395.	1.8	12
51	Nutrient optimization of tree growth alters structure and function of boreal soil food webs. Forest Ecology and Management, 2018, 428, 46-56.	1.4	11
52	Projecting biodiversity and wood production in future forest landscapes: 15 key modeling considerations. Journal of Environmental Management, 2017, 197, 404-414.	3.8	9
53	Longâ€ŧerm nitrogen enrichment does not increase microbial phosphorus mobilization in a northern coniferous forest. Functional Ecology, 2021, 35, 277-287.	1.7	9
54	Narrow pasts and futures: how frames of sustainability transformation limit societal change. Journal of Environmental Studies and Sciences, 2021, 11, 76-84.	0.9	9

#	Article	IF	CITATIONS
55	Climate Benefit of Different Tree Species on Former Agricultural Land in Northern Europe. Forests, 2021, 12, 1810.	0.9	9
56	From ecological knowledge to conservation policy: a case study on green tree retention and continuous-cover forestry in Sweden. Biodiversity and Conservation, 2019, 28, 3547-3574.	1.2	8
57	Moving towards multi-layered, mixed-species forests in riparian buffers will enhance their long-term function in boreal landscapes. Forest Ecology and Management, 2021, 493, 119254.	1.4	7
58	Belowground resource utilization in monocultures and mixtures of Scots pine and Norway spruce. Forest Ecology and Management, 2021, 500, 119647.	1.4	7
59	Interdisciplinary science for future governance and management of forests. Ambio, 2016, 45, 69-73.	2.8	6
60	A struggling collaborative process – revisiting the woodland key habitat concept in Swedish forests. Scandinavian Journal of Forest Research, 2019, 34, 699-708.	0.5	6
61	Framing woodland key habitats in the Swedish media – how has the framing changed over time?. Scandinavian Journal of Forest Research, 2020, 35, 198-209.	0.5	6
62	Survival and growth of Scots pine (<i>Pinus sylvestris)</i> seedlings in north Sweden: effects of planting position and arginine phosphate addition. Scandinavian Journal of Forest Research, 2021, 36, 423-433.	0.5	6
63	Bringing "Climate-Smart Forestry―Down to the Local Level—Identifying Barriers, Pathways and Indicators for Its Implementation in Practice. Forests, 2022, 13, 98.	0.9	6
64	Science for Trade-Offs Between Conflicting Interests in Future Forests. Forests, 2011, 2, 631-636.	0.9	4
65	Increased tree growth following long-term optimised fertiliser application indirectly alters soil properties in a boreal forest. European Journal of Forest Research, 2021, 140, 241-254.	1.1	2
66	Forest future s by Swedish students – developing a mind mapping method for data collection. Scandinavian Journal of Forest Research, 2017, 32, 807-817.	0.5	1
67	Large-scale assessment of artificially coated seeds for forest regeneration across Sweden. New Forests, 0, , 1.	0.7	1
68	A missing key to our understanding of forest carbon dynamics. A commentary on: â€~High nitrogen resorption efficiency of forest mosses'. Annals of Botany, 2020, 125, vi-vii.	1.4	0