Jim Manos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155279/publications.pdf

Version: 2024-02-01

38	1,368	18	35
papers	citations	h-index	g-index
38	38	38	1986
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Halogenated Dihydropyrrol-2-One Molecules Inhibit Pyocyanin Biosynthesis by Blocking the Pseudomonas Quinolone Signaling System. Molecules, 2022, 27, 1169.	1.7	8
2	The human microbiome in disease and pathology. Apmis, 2022, 130, 690-705.	0.9	38
3	The Use of Artificial Sputum Media to Enhance Investigation and Subsequent Treatment of Cystic Fibrosis Bacterial Infections. Microorganisms, 2022, 10, 1269.	1.6	10
4	N-Acetylcysteine Protects Bladder Epithelial Cells from Bacterial Invasion and Displays Antibiofilm Activity against Urinary Tract Bacterial Pathogens. Antibiotics, 2021, 10, 900.	1.5	14
5	Disruption of biofilms and killing of Burkholderia cenocepacia from cystic fibrosis lung using an antioxidant-antibiotic combination therapy. International Journal of Antimicrobial Agents, 2021, 58, 106372.	1.1	10
6	Effect of N-Acetylcysteine in Combination with Antibiotics on the Biofilms of Three Cystic Fibrosis Pathogens of Emerging Importance. Antibiotics, 2021, 10, 1176.	1.5	7
7	Current and Emerging Therapies to Combat Cystic Fibrosis Lung Infections. Microorganisms, 2021, 9, 1874.	1.6	12
8	Covalent Immobilization of <i>N</i> -Acetylcysteine on a Polyvinyl Chloride Substrate Prevents Bacterial Adhesion and Biofilm Formation. Langmuir, 2020, 36, 13023-13033.	1.6	6
9	The effect of N-acetylcysteine in a combined antibiofilm treatment against antibiotic-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2020, 75, 1787-1798.	1.3	19
10	Pseudomonas aeruginosa biofilms and infections: Roles of extracellular molecules., 2020,, 29-46.		5
11	Conditions Under Which Glutathione Disrupts the Biofilms and Improves Antibiotic Efficacy of Both ESKAPE and Non-ESKAPE Species. Frontiers in Microbiology, 2019, 10, 2000.	1.5	22
12	Bacteriophage PEV20 and Ciprofloxacin Combination Treatment Enhances Removal of Pseudomonas aeruginosa Biofilm Isolated from Cystic Fibrosis and Wound Patients. AAPS Journal, 2019, 21, 49.	2.2	64
13	Spray-Dried Particles of Nitric Oxide-Modified Glutathione for the Treatment of Chronic Lung Infection. Molecular Pharmaceutics, 2019, 16, 1723-1731.	2.3	2
14	Two-in-One Biointerfacesâ€"Antimicrobial and Bioactive Nanoporous Gallium Titanate Layers for Titanium Implants. Nanomaterials, 2017, 7, 229.	1.9	45
15	Glutathione Enhances Antibiotic Efficiency and Effectiveness of DNase I in Disrupting Pseudomonas aeruginosa Biofilms While Also Inhibiting Pyocyanin Activity, Thus Facilitating Restoration of Cell Enzymatic Activity, Confluence and Viability. Frontiers in Microbiology, 2017, 8, 2429.	1.5	28
16	Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome. Antimicrobial Agents and Chemotherapy, 2016, 60, 4539-4551.	1.4	50
17	Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2015, 6, 1036.	1.5	144
18	Pulsed-Field Gel Electrophoresis of Pseudomonas aeruginosa. Methods in Molecular Biology, 2015, 1301, 157-170.	0.4	10

#	Article	IF	CITATIONS
19	Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung. PLoS ONE, 2015, 10, e0134229.	1.1	7
20	Developing an international <i>Pseudomonas aeruginosa</i> reference panel. MicrobiologyOpen, 2013, 2, 1010-1023.	1.2	94
21	Modulation of gene expression by Pseudomonas aeruginosa during chronic infection in the adult cystic fibrosis lung. Microbiology (United Kingdom), 2013, 159, 2354-2363.	0.7	19
22	Secretome of Transmissible Pseudomonas aeruginosa AES-1R Grown in a Cystic Fibrosis Lung-Like Environment. Journal of Proteome Research, 2013, 12, 5357-5369.	1.8	18
23	Proteomics of <i>Pseudomonas aeruginosa</i> Australian Epidemic Strain 1 (AES-1) Cultured under Conditions Mimicking the Cystic Fibrosis Lung Reveals Increased Iron Acquisition via the Siderophore Pyochelin. Journal of Proteome Research, 2012, 11, 776-795.	1.8	45
24	Pseudomonas aeruginosa strains from the chronically infected cystic fibrosis lung display increased invasiveness of A549 epithelial cells over time. Microbial Pathogenesis, 2012, 53, 37-43.	1.3	9
25	Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain. BMC Microbiology, 2012, 12, 16.	1.3	43
26	Pseudomonas aeruginosa AES-1 Exhibits Increased Virulence Gene Expression during Chronic Infection of Cystic Fibrosis Lung. PLoS ONE, 2011, 6, e24526.	1.1	31
27	Clinical profile of adult cystic fibrosis patients with frequent epidemic clones of <i>Pseudomonas aeruginosa</i> . Respirology, 2010, 15, 923-929.	1.3	19
28	Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. Journal of Medical Microbiology, 2010, 59, 1089-1100.	0.7	137
29	Gene expression characteristics of a cystic fibrosis epidemic strain of <i>Pseudomonas aeruginosa < li>during biofilm and planktonic growth. FEMS Microbiology Letters, 2009, 292, 107-114.</i>	0.7	40
30	Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. Journal of Medical Microbiology, 2008, 57, 1454-1465.	0.7	50
31	Phenotypic Characterization of Clonal and Nonclonal Pseudomonas aeruginosa Strains Isolated from Lungs of Adults with Cystic Fibrosis. Journal of Clinical Microbiology, 2007, 45, 1697-1704.	1.8	100
32	The Genera Proteus, Providencia, and Morganella. , 2006, , 245-269.		55
33	Protease IV production in Pseudomonas aeruginosa from the lungs of adults with cystic fibrosis. Journal of Medical Microbiology, 2006, 55, 1641-1644.	0.7	28
34	Transcription of Proteus mirabilis flaAB. Microbiology (United Kingdom), 2004, 150, 2857-2863.	0.7	8
35	Proteus mirabilis ZapA Metalloprotease Degrades a Broad Spectrum of Substrates, Including Antimicrobial Peptides. Infection and Immunity, 2004, 72, 5159-5167.	1.0	132

 $Enhanced \ motility \ of \ a \ Proteus \ mirabilis \ strain \ expressing \ hybrid \ FlaAB \ flagella. \ Microbiology \ (United) \ Tj \ ETQq0 \ 0 \ 0 \ gBT \ /Overlock \ 10 \ Tf \ 15 \ Overlock \ 10 \ Overlock \$

3

36

#	Article	IF	CITATIONS
37	Transcriptional analysis and operon structure of the tagA?orf2?orf3?mop?tagD region on the Vibrio pathogenicity island in epidemic V. cholerae. FEMS Microbiology Letters, 2004, 235, 199-207.	0.7	4
38	An Investigation of the Molecular Basis of the Spontaneous Occurrence of a Catalaseâ€Negative Phenotype inHelicobacter pylori. Helicobacter, 1998, 3, 28-38.	1.6	20