List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154879/publications.pdf Version: 2024-02-01

LIMING RIAN

#	Article	IF	CITATIONS
1	Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2017, 2, .	9.9	594
2	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	23.0	472
3	Electrical bioadhesive interface for bioelectronics. Nature Materials, 2021, 20, 229-236.	13.3	361
4	Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10117-10122.	3.3	344
5	Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials, 2011, 32, 6425-6434.	5.7	327
6	The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials, 2013, 34, 413-421.	5.7	265
7	Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials, 2016, 101, 217-228.	5.7	249
8	The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Osteoarthritis and Cartilage, 2007, 15, 1025-1033.	0.6	235
9	Coculture of Human Mesenchymal Stem Cells and Articular Chondrocytes Reduces Hypertrophy and Enhances Functional Properties of Engineered Cartilage. Tissue Engineering - Part A, 2011, 17, 1137-1145.	1.6	235
10	Magnetite Nanostructured Porous Hollow Helical Microswimmers for Targeted Delivery. Advanced Functional Materials, 2015, 25, 5333-5342.	7.8	210
11	Instant tough bioadhesive with triggerable benign detachment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15497-15503.	3.3	210
12	A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells. Journal of the American Chemical Society, 2015, 137, 7337-7346.	6.6	202
13	Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials, 2019, 210, 51-61.	5.7	179
14	Dynamic and Cell-Infiltratable Hydrogels as Injectable Carrier of Therapeutic Cells and Drugs for Treating Challenging Bone Defects. ACS Central Science, 2019, 5, 440-450.	5.3	166
15	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	23.0	161
16	Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Science Translational Medicine, 2020, 12, .	5.8	147
17	Ultrafast Selfâ€Gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing. Advanced Functional Materials, 2021, 31, 2102583.	7.8	146
18	Adaptable Hydrogels Mediate Cofactorâ€Assisted Activation of Biomarkerâ€Responsive Drug Delivery via Positive Feedback for Enhanced Tissue Regeneration. Advanced Science, 2018, 5, 1800875.	5.6	141

#	Article	IF	CITATIONS
19	Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials, 2018, 174, 1-16.	5.7	140
20	Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomaterialia, 2017, 53, 329-342.	4.1	136
21	Organic Semiconducting Polymer Nanoparticles for Photoacoustic Labeling and Tracking of Stem Cells in the Second Near-Infrared Window. ACS Nano, 2018, 12, 12201-12211.	7.3	127
22	Dynamic Compressive Loading Enhances Cartilage Matrix Synthesis and Distribution and Suppresses Hypertrophy in hMSC-Laden Hyaluronic Acid Hydrogels. Tissue Engineering - Part A, 2012, 18, 715-724.	1.6	121
23	Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations. Science Advances, 2021, 7, .	4.7	118
24	Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomaterialia, 2017, 64, 389-400.	4.1	117
25	Selfâ€Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonateâ€Magnesium (Mg ²⁺) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking. Advanced Functional Materials, 2017, 27, 1701642.	7.8	110
26	Dynamic Mechanical Loading Enhances Functional Properties of Tissue-Engineered Cartilage Using Mature Canine Chondrocytes. Tissue Engineering - Part A, 2010, 16, 1781-1790.	1.6	109
27	Robust Biopolymeric Supramolecular "Hostâ^Guest Macromer―Hydrogels Reinforced by <i>in Situ</i> Formed Multivalent Nanoclusters for Cartilage Regeneration. Macromolecules, 2016, 49, 866-875.	2.2	102
28	Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling. Biomaterials, 2017, 145, 33-43.	5.7	100
29	Effective Phototheranostics of Brain Tumor Assisted by Near-Infrared-II Light-Responsive Semiconducting Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 33492-33499.	4.0	100
30	Magnetically Tuning Tether Mobility of Integrin Ligand Regulates Adhesion, Spreading, and Differentiation of Stem Cells. Nano Letters, 2017, 17, 1685-1695.	4.5	96
31	Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. Biomaterials, 2020, 232, 119684.	5.7	96
32	Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nature Communications, 2021, 12, 3514.	5.8	92
33	Immunoregulation of macrophages by dynamic ligand presentation via ligand–cation coordination. Nature Communications, 2019, 10, 1696.	5.8	84
34	Desuccinylation-Triggered Peptide Self-Assembly: Live Cell Imaging of SIRT5 Activity and Mitochondrial Activity Modulation. Journal of the American Chemical Society, 2020, 142, 18150-18159.	6.6	84
35	Nanomedicineâ€Boosting Tumor Immunogenicity for Enhanced Immunotherapy. Advanced Functional Materials, 2021, 31, 2011171.	7.8	84
36	Injectable biomaterials for translational medicine. Materials Today, 2019, 28, 81-97.	8.3	82

#	Article	IF	CITATIONS
37	Near-infrared light-triggered release of small molecules for controlled differentiation and long-term tracking of stem cells inÂvivo using upconversion nanoparticles. Biomaterials, 2016, 110, 1-10.	5.7	77
38	Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche. Biomaterials, 2016, 77, 44-52.	5.7	77
39	Hierarchical Porous Poly(<scp>l</scp> -lactic acid) Nanofibrous Membrane for Ultrafine Particulate Aerosol Filtration. ACS Applied Materials & Interfaces, 2019, 11, 46261-46268.	4.0	77
40	Magnetic Living Hydrogels for Intestinal Localization, Retention, and Diagnosis. Advanced Functional Materials, 2021, 31, 2010918.	7.8	77
41	Influence of decreasing nutrient path length on the development of engineered cartilage. Osteoarthritis and Cartilage, 2009, 17, 677-685.	0.6	76
42	Mussel-mimetic hydrogels with defined cross-linkers achieved via controlled catechol dimerization exhibiting tough adhesion for wet biological tissues. Chemical Communications, 2017, 53, 12000-12003.	2.2	76
43	3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomaterials Science, 2021, 9, 2620-2630.	2.6	73
44	Remote Manipulation of Ligand Nano-Oscillations Regulates Adhesion and Polarization of Macrophages in Vivo. Nano Letters, 2017, 17, 6415-6427.	4.5	72
45	Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials, 2018, 178, 681-696.	5.7	71
46	Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nature Communications, 2021, 12, 7162.	5.8	70
47	Remote Control of Heterodimeric Magnetic Nanoswitch Regulates the Adhesion and Differentiation of Stem Cells. Journal of the American Chemical Society, 2018, 140, 5909-5913.	6.6	67
48	Magnetic Manipulation of Reversible Nanocaging Controls <i>In Vivo</i> Adhesion and Polarization of Macrophages. ACS Nano, 2018, 12, 5978-5994.	7.3	67
49	Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation. ACS Nano, 2017, 11, 9636-9649.	7.3	65
50	Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. Science Advances, 2019, 5, eaaw3896.	4.7	64
51	Passaged Adult Chondrocytes Can Form Engineered Cartilage with Functional Mechanical Properties: A Canine Model. Tissue Engineering - Part A, 2010, 16, 1041-1051.	1.6	63
52	Microscopic local stiffening in a supramolecular hydrogel network expedites stem cell mechanosensing in 3D and bone regeneration. Materials Horizons, 2021, 8, 1722-1734.	6.4	62
53	Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nature Communications, 2019, 10, 2705.	5.8	60
54	One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Materials, 2018, 10, e455-e455.	3.8	59

#	Article	IF	CITATIONS
55	Remote Control of Intracellular Calcium Using Upconversion Nanotransducers Regulates Stem Cell Differentiation In Vivo. Advanced Functional Materials, 2018, 28, 1802642.	7.8	58
56	Cell-Mediated Degradation Regulates Human Mesenchymal Stem Cell Chondrogenesis and Hypertrophy in MMP-Sensitive Hyaluronic Acid Hydrogels. PLoS ONE, 2014, 9, e99587.	1.1	57
57	Citric Acid/Cysteine-Modified Cellulose-Based Materials: Green Preparation and Their Applications in Anticounterfeiting, Chemical Sensing, and UV Shielding. ACS Sustainable Chemistry and Engineering, 2017, 5, 11387-11394.	3.2	55
58	Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioactive Materials, 2020, 5, 819-831.	8.6	55
59	Rationally designed protein cross-linked hydrogel for bone regeneration via synergistic release of magnesium and zinc ions. Biomaterials, 2021, 274, 120895.	5.7	55
60	Differences in Interleukin-1 Response Between Engineered and Native Cartilage. Tissue Engineering - Part A, 2008, 14, 1721-1730.	1.6	53
61	Cell-adaptable dynamic hydrogel reinforced with stem cells improves the functional repair of spinal cord injury by alleviating neuroinflammation. Biomaterials, 2021, 279, 121190.	5.7	53
62	Influence of Temporary Chondroitinase ABC-Induced Glycosaminoglycan Suppression on Maturation of Tissue-Engineered Cartilage. Tissue Engineering - Part A, 2009, 15, 2065-2072.	1.6	52
63	Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Research and Therapy, 2017, 8, 221.	2.4	52
64	Molecular cargo delivery using multicellular magnetic microswimmers. Applied Materials Today, 2019, 15, 242-251.	2.3	52
65	Multifunctional Quantum Dot Nanoparticles for Effective Differentiation and Longâ€∓erm Tracking of Human Mesenchymal Stem Cells In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 1049-1057.	3.9	50
66	Supramolecular hydrogels cross-linked by preassembled host–guest PEG cross-linkers resist excessive, ultrafast, and non-resting cyclic compression. NPG Asia Materials, 2018, 10, 788-799.	3.8	50
67	New chemosynthetic route to linear ε-poly-lysine. Chemical Science, 2015, 6, 6385-6391.	3.7	49
68	Injectable Nanoreinforced Shape-Memory Hydrogel System for Regenerating Spinal Cord Tissue from Traumatic Injury. ACS Applied Materials & Interfaces, 2018, 10, 29299-29307.	4.0	49
69	Mechanical and biochemical characterization of cartilage explants in serum-free culture. Journal of Biomechanics, 2008, 41, 1153-1159.	0.9	48
70	Adhesive Hemostatic Hydrogel with Ultrafast Gelation Arrests Acute Upper Gastrointestinal Hemorrhage in Pigs. Advanced Functional Materials, 2022, 32, .	7.8	48
71	Anisotropic Ligand Nanogeometry Modulates the Adhesion and Polarization State of Macrophages. Nano Letters, 2019, 19, 1963-1975.	4.5	47
72	New bio-renewable polyester with rich side amino groups from <scp>l</scp> -lysine via controlled ring-opening polymerization. Polymer Chemistry, 2014, 5, 6495-6502.	1.9	46

#	Article	IF	CITATIONS
73	Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. ACS Applied Materials & Interfaces, 2017, 9, 38687-38694.	4.0	46
74	Highly Dynamic Nanocomposite Hydrogels Selfâ€Assembled by Metal Ion‣igand Coordination. Small, 2019, 15, e1900242.	5.2	45
75	Magnesiumâ€Encapsulated Injectable Hydrogel and 3Dâ€Engineered Polycaprolactone Conduit Facilitate Peripheral Nerve Regeneration. Advanced Science, 2022, 9, .	5.6	45
76	An In Situ Reversible Heterodimeric Nanoswitch Controlled by Metalâ€Ion–Ligand Coordination Regulates the Mechanosensing and Differentiation of Stem Cells. Advanced Materials, 2018, 30, e1803591.	11.1	44
77	Substrate Coupling Strength of Integrin-Binding Ligands Modulates Adhesion, Spreading, and Differentiation of Human Mesenchymal Stem Cells. Nano Letters, 2015, 15, 6592-6600.	4.5	43
78	Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4. Theranostics, 2019, 9, 4525-4541.	4.6	43
79	Photocontrolled SiRNA Delivery and Biomarker-Triggered Luminogens of Aggregation-Induced Emission by Up-Conversion NaYF ₄ :Yb ³⁺ Tm ³⁺ @SiO ₂ Nanoparticles for Inducing and Monitoring Stem-Cell Differentiation. ACS Applied Materials & amp; Interfaces, 2019, 11, 22074-22084.	4.0	43
80	Nanocarrierâ€Mediated Codelivery of Small Molecular Drugs and siRNA to Enhance Chondrogenic Differentiation and Suppress Hypertrophy of Human Mesenchymal Stem Cells. Advanced Functional Materials, 2016, 26, 2463-2472.	7.8	42
81	Multivalent Host–Guest Hydrogels as Fatigue-Resistant 3D Matrix for Excessive Mechanical Stimulation of Encapsulated Cells. Chemistry of Materials, 2017, 29, 8604-8610.	3.2	42
82	Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS Nano, 2019, 13, 14048-14069.	7.3	42
83	Bioadhesive Polymersome for Localized and Sustained Drug Delivery at Pathological Sites with Harsh Enzymatic and Fluidic Environment via Supramolecular Host–Guest Complexation. Small, 2018, 14, 1702288.	5.2	40
84	Injectable supramolecular gelatin hydrogel loading of resveratrol and histatin-1 for burn wound therapy. Biomaterials Science, 2020, 8, 4810-4820.	2.6	40
85	Anisotropic Nanoscale Presentation of Cell Adhesion Ligand Enhances the Recruitment of Diverse Integrins in Adhesion Structures and Mechanosensingâ€Dependent Differentiation of Stem Cells. Advanced Functional Materials, 2019, 29, 1806822.	7.8	38
86	Effects of Dexamethasone on the Functional Properties of Cartilage Explants during Long-Term Culture. American Journal of Sports Medicine, 2010, 38, 78-85.	1.9	37
87	Nanolayered hybrid mediates synergistic co-delivery of ligand and ligation activator for inducing stem cell differentiation and tissue healing. Biomaterials, 2017, 149, 12-28.	5.7	36
88	Effect of cartilaginous matrix components on the chondrogenesis and hypertrophy of mesenchymal stem cells in hyaluronic acid hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2292-2300.	1.6	36
89	Isoliquiritigenin-Induced Differentiation in Mouse Melanoma B16F0 Cell Line. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-11.	1.9	35
90	Efficient catechol functionalization of biopolymeric hydrogels for effective multiscale bioadhesion. Materials Science and Engineering C, 2019, 103, 109835.	3.8	34

#	Article	IF	CITATIONS
91	Biocompatible cellulose-based supramolecular nanoparticles driven by host–guest interactions for drug delivery. Carbohydrate Polymers, 2020, 237, 116114.	5.1	34
92	Soft Polymeric Matrix as a Macroscopic Cage for Magnetically Modulating Reversible Nanoscale Ligand Presentation. Nano Letters, 2020, 20, 3207-3216.	4.5	34
93	Preserving the adhesion of catechol-conjugated hydrogels by thiourea–quinone coupling. Biomaterials Science, 2016, 4, 1726-1730.	2.6	33
94	Magnetic Enhancement of Chondrogenic Differentiation of Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 2019, 5, 2200-2207.	2.6	33
95	An Innovative Solventâ€Responsive Coiling–Expanding Stent. Advanced Materials, 2021, 33, e2101005.	11.1	33
96	Toward Engineering a Biological Joint Replacement. Journal of Knee Surgery, 2012, 25, 187-196.	0.9	32
97	Targeted Covalent Inhibition of Grb2–Sos1 Interaction through Proximity-Induced Conjugation in Breast Cancer Cells. Molecular Pharmaceutics, 2017, 14, 1548-1557.	2.3	32
98	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polymers, 2021, 256, 117574.	5.1	32
99	Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds. Materials Science and Engineering C, 2017, 70, 969-975.	3.8	30
100	Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels. Acta Biomaterialia, 2014, 10, 1333-1340.	4.1	29
101	Cross-Linked Cellulose Membranes with Robust Mechanical Property, Self-Adaptive Breathability, and Excellent Biocompatibility. ACS Sustainable Chemistry and Engineering, 2019, 7, 19799-19806.	3.2	29
102	Bioactive Nanocomposite Poly (Ethylene Clycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers. Macromolecular Bioscience, 2016, 16, 1019-1026.	2.1	28
103	A skin inspired bio-smart composite with water responsive shape memory ability. Materials Chemistry Frontiers, 2019, 3, 1128-1138.	3.2	28
104	Manipulation of the Nanoscale Presentation of Integrin Ligand Produces Cancer Cells with Enhanced Stemness and Robust Tumorigenicity. Nano Letters, 2021, 21, 3225-3236.	4.5	28
105	Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioengineering, 2020, 4, 030401.	3.3	27
106	Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells. Advanced Materials, 2021, 33, e2105765.	11.1	27
107	One-pot atom-efficient synthesis of bio-renewable polyesters and cyclic carbonates through tandem catalysis. Chemical Communications, 2015, 51, 8504-8507.	2.2	26
108	Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration. Bioactive Materials, 2022, 13, 9-22.	8.6	26

#	Article	IF	CITATIONS
109	Stretchable and Bioadhesive Supramolecular Hydrogels Activated by a One-Stone–Two-Bird Postgelation Functionalization Method. ACS Applied Materials & Interfaces, 2019, 11, 16328-16335.	4.0	25
110	Physiologic deformational loading does not counteract the catabolic effects of interleukin-1 in long-term culture of chondrocyte-seeded agarose constructs. Journal of Biomechanics, 2008, 41, 3253-3259.	0.9	23
111	IFN-γ/SrBG composite scaffolds promote osteogenesis by sequential regulation of macrophages from M1 to M2. Journal of Materials Chemistry B, 2021, 9, 1867-1876.	2.9	23
112	A new strategy to synthesize bottlebrushes with a helical polyglutamate backbone via N-carboxyanhydride polymerization and RAFT. Chemical Communications, 2014, 50, 14183-14186.	2.2	22
113	Optical µ-Printing of Cellular-Scale Microscaffold Arrays for 3D Cell Culture. Scientific Reports, 2017, 7, 8880.	1.6	22
114	Mussel cuticle-mimetic ultra-tough, self-healing elastomers with double-locked nanodomains exhibit fast stimuli-responsive shape transformation. Journal of Materials Chemistry A, 2020, 8, 12463-12471.	5.2	22
115	Biomimetic Presentation of Cryptic Ligands <i>via</i> Single-Chain Nanogels for Synergistic Regulation of Stem Cells. ACS Nano, 2020, 14, 4027-4035.	7.3	22
116	Immunoregulation of Macrophages by Controlling Winding and Unwinding of Nanohelical Ligands. Advanced Functional Materials, 2021, 31, 2103409.	7.8	19
117	The Effect of Applied Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured with TGF-ß3. , 2006, 2006, 779-82.		18
118	Influence of chondroitin sulfate on the biochemical, mechanical and frictional properties of cartilage explants in long-term culture. Journal of Biomechanics, 2009, 42, 286-290.	0.9	15
119	Manipulating the mechanical properties of biomimetic hydrogels with multivalent host–guest interactions. Journal of Materials Chemistry B, 2019, 7, 1726-1733.	2.9	15
120	The Effect of the Nanoparticle Shape on T Cell Activation. Small, 2022, 18, e2107373.	5.2	15
121	The Effects of Oxidative Stress on the Compressive Damage Thresholds of C2C12 Mouse Myoblasts: Implications for Deep Tissue Injury. Annals of Biomedical Engineering, 2015, 43, 287-296.	1.3	14
122	Multiscale reconstruction of a synthetic biomimetic micro-niche for enhancing and monitoring the differentiation of stem cells. Biomaterials, 2018, 173, 87-99.	5.7	14
123	Multifunctional Nanoprobe for the Delivery of Therapeutic siRNA and Real-Time Molecular Imaging of Parkinson's Disease Biomarkers. ACS Applied Materials & Interfaces, 2021, 13, 11609-11620.	4.0	14
124	Ultrasoundâ€Responsive Aqueous Twoâ€Phase Microcapsules for Onâ€Demand Drug Release. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
125	Biomaterial-Mediated Presentation of Jagged-1 Mimetic Ligand Enhances Cellular Activation of Notch Signaling and Bone Regeneration. ACS Nano, 2022, 16, 1051-1062.	7.3	14
126	Interventions to improve medication adherence among Chinese patients with hypertension: a systematic review and meta-analysis of randomized controlled trails. International Journal of Pharmacy Practice, 2018, 26, 291-301.	0.3	13

LIMING BIAN

#	Article	IF	CITATIONS
127	Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display. Journal of Materials Science, 2019, 54, 1236-1247.	1.7	13
128	Long-Term Detection of Oncogenic MicroRNA in Living Human Cancer Cells by Gold@ Polydopamine–Shell Nanoprobe. ACS Biomaterials Science and Engineering, 2020, 6, 3778-3783.	2.6	13
129	Detection of Matrix Metallopeptidase 13 for Monitoring Stem Cell Differentiation and Early Diagnosis of Osteoarthritis by Fluorescent Lightâ€Up Probes with Aggregationâ€Induced Emission Characteristics. Advanced Biology, 2018, 2, 1800010.	3.0	12
130	Phytantriol-Based Cubosome Formulation as an Antimicrobial against Lipopolysaccharide-Deficient Gram-Negative Bacteria. ACS Applied Materials & Interfaces, 2020, 12, 44485-44498.	4.0	12
131	Change in viability of C2C12 myoblasts under compression, shear and oxidative challenges. Journal of Biomechanics, 2016, 49, 1305-1310.	0.9	11
132	Surface decoration of development-inspired synthetic N-cadherin motif via Ac-BP promotes osseointegration of metal implants. Bioactive Materials, 2021, 6, 1353-1364.	8.6	10
133	Achieving coalesced breathability, mechanical and shape memory properties of collagen fibrous matrix through complexing with chromium (III). Materials and Design, 2020, 186, 108206.	3.3	9
134	Dynamic cell-adaptable hydrogels with a moderate level of elasticity promote 3D development of encapsulated cells. Applied Materials Today, 2021, 22, 100892.	2.3	9
135	Nanoparticleâ€Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution to Provide a Stable Segregated Cell Microenvironment. Advanced Materials, 2021, 33, 2007209.	11.1	9
136	Biomaterial-mediated presentation of wnt5a mimetic ligands enhances chondrogenesis and metabolism of stem cells by activating non-canonical Wnt signaling. Biomaterials, 2022, 281, 121316.	5.7	8
137	Direct optical micropatterning of poly(dimethylsiloxane) for microfluidic devices. Journal of Micromechanics and Microengineering, 2018, 28, 095011.	1.5	7
138	Discovery of a Novel Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2) and Cyclin-Dependent Kinase 4 (CDK4) Dual Inhibitor for the Treatment of Triple-Negative Breast Cancer. Journal of Medicinal Chemistry, 2022, 65, 6729-6747.	2.9	7
139	A model for facilitating translational research and development in China: Call for establishing a Hong Kong Branch of the Chinese National Engineering Research Centre for Biomaterials. Journal of Orthopaedic Translation, 2014, 2, 170-176.	1.9	6
140	A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells. Methods in Molecular Biology, 2017, 1570, 155-164.	0.4	5
141	Ultrasoundâ€Responsive Aqueous Twoâ€Phase Microcapsules for Onâ€Demand Drug Release. Angewandte Chemie, 2022, 134, .	1.6	4
142	Seco-4-methyl-DCK derivatives as potent chemosensitizers. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 28-31.	1.0	3
143	Chemical study of the Chinese medicine Pi Han Yao. Biomedical Reports, 2016, 4, 219-222.	0.9	2
144	Functional Tissue Engineering of Articular Cartilage With Adult Chondrocytes. , 2009, , .		1

#	Article	IF	CITATIONS
145	Rapid and room temperature detection of single nucleotide variation with enhanced discrimination by crowding assisted allele specific extension. Chemical Communications, 2019, 55, 12052-12055.	2.2	1
146	Polypeptide coatings on biominerals with superior antimicrobial and antifouling properties inspired by human salivary proteins. Applied Materials Today, 2022, 27, 101446.	2.3	1
147	Dynamic Compressive Loading and Crosslinking Density Influence the Chondrogenic and Hypertrophic Differentiation of Human Mesenchymal Stem Cells Seeded in Hyaluronic Acid Hydrogels. , 2012, , .		0
148	Direct optical patterning of poly(dimethylsiloxane) microstructures for microfluidic chips. , 2016, , .		0
149	The Effect of Applied Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured with TGF-ß3. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006,	0.5	0