Pawan Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154876/publications.pdf

Version: 2024-02-01

471371 526166 41 835 17 27 citations h-index g-index papers 41 41 41 1125 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. Jacs Au, 2021, 1, 1422-1434.	3.6	95
2	Highly luminescent biocompatible CsPbBr ₃ @SiO ₂ core–shell nanoprobes for bioimaging and drug delivery. Journal of Materials Chemistry B, 2020, 8, 10337-10345.	2.9	59
3	Light–matter coupling in large-area van der Waals superlattices. Nature Nanotechnology, 2022, 17, 182-189.	15.6	49
4	Horizontally and vertically aligned growth of strained MoS ₂ layers with dissimilar wetting and catalytic behaviors. CrystEngComm, 2017, 19, 5068-5078.	1.3	39
5	Effect of Sulfur Evaporation Rate on Screw Dislocation Driven Growth of MoS ₂ with High Atomic Step Density. Crystal Growth and Design, 2016, 16, 7145-7154.	1.4	38
6	Phase and Vacancy Modulation in Tungsten Oxide: Electrochemical Hydrogen Evolution. ChemElectroChem, 2019, 6, 3420-3428.	1.7	35
7	Direct Optoelectronic Imaging of 2D Semiconductor–3D Metal Buried Interfaces. ACS Nano, 2021, 15, 5618-5630.	7.3	35
8	Direct visualization of out-of-equilibrium structural transformations in atomically thin chalcogenides. Npj 2D Materials and Applications, 2020, 4, .	3.9	31
9	Nanoscale Chemical and Structural Analysis during <i>In Situ</i> Scanning/Transmission Electron Microscopy in Liquids. ACS Nano, 2021, 15, 10228-10240.	7.3	29
10	Phase engineering of seamless heterophase homojunctions with co-existing 3R and 2H phases in WS ₂ monolayers. Nanoscale, 2018, 10, 3320-3330.	2.8	27
11	Design and Implementation of Quad-Element Super-Wideband MIMO Antenna for IoT Applications. IEEE Access, 2020, 8, 226697-226704.	2.6	27
12	Design and Implementation of Quad-Port MIMO Antenna with Dual-Band Elimination Characteristics for Ultra-Wideband Applications. Applied Sciences (Switzerland), 2020, 10, 1715.	1.3	24
13	Utilization of zeolite/polymer composites for gas sensing: A review. Sensors and Actuators B: Chemical, 2017, 242, 1007-1020.	4.0	23
14	Design of Quad-Port MIMO/Diversity Antenna with Triple-Band Elimination Characteristics for Super-Wideband Applications. Sensors, 2020, 20, 624.	2.1	23
15	High-Efficiency WSe ₂ Photovoltaic Devices with Electron-Selective Contacts. ACS Nano, 2022, 16, 8827-8836.	7.3	22
16	High-Density, Localized Quantum Emitters in Strained 2D Semiconductors. ACS Nano, 2022, 16, 9651-9659.	7.3	21
17	Competing thermal expansion mismatch and lattice strain engineered growth of crack free WS ₂ in-plane heterostructures. Journal of Materials Chemistry C, 2018, 6, 11407-11415.	2.7	19
18	Growth and microstructural evolution of WS2 nanostructures with tunable field and light modulated electrical transport. Applied Surface Science, 2018, 436, 846-853.	3.1	18

#	Article	IF	CITATIONS
19	Self-Hybridized Polaritonic Emission from Layered Perovskites. Nano Letters, 2021, 21, 6245-6252.	4.5	18
20	Phase selective CVD growth and photoinduced 1T â†' 1H phase transition in a WS ₂ monolayer. Journal of Materials Chemistry C, 2020, 8, 10438-10447.	2.7	17
21	Layer number dependent optical and electrical properties of CVD grown two-dimensional anisotropic WS2. Surfaces and Interfaces, 2021, 26, 101308.	1.5	17
22	Giant Gate-Tunability of Complex Refractive Index in Semiconducting Carbon Nanotubes. ACS Photonics, 2020, 7, 2896-2905.	3.2	16
23	Thermal expansion coefficient and phonon dynamics in coexisting allotropes of monolayer WS2 probed by Raman scattering. Journal of Physics Condensed Matter, 2019, 31, 505403.	0.7	15
24	Zwitterion-assisted transition metal dichalcogenide nanosheets for scalable and biocompatible inkjet printing. Nano Research, 2020, 13, 2726-2734.	5.8	15
25	Photocatalytic Water Disinfection of CVD Grown WS ₂ Monolayer Decorated with Ag Nanoparticles. ChemistrySelect, 2018, 3, 7648-7655.	0.7	14
26	Design of Quad-Port Ultra-Wideband Multiple-Input-Multiple-Output Antenna with Wide Axial-Ratio Bandwidth. Sensors, 2020, 20, 1174.	2.1	14
27	Gram scale synthesis of monoclinic VO2 microcrystals by hydrothermal and argon annealing treatment. Ceramics International, 2019, 45, 3554-3562.	2.3	13
28	Carrier type modulation in current annealed graphene layers. Applied Physics Letters, 2014, 104, 083517.	1.5	12
29	Scalable faceted voids with luminescent enhanced edges in WS ₂ monolayers. Nanoscale, 2018, 10, 16321-16331.	2.8	11
30	Interplay between Thermal Stress and Interface Binding on Fracture of WS ₂ Monolayer with Triangular Voids. ACS Applied Materials & Interfaces, 2022, 14, 16876-16884.	4.0	10
31	Nanosculpting of Atomically Thin 2D Materials for Siteâ€Specific Photoluminescence Modulation. Advanced Optical Materials, 2018, 6, 1701284.	3.6	7
32	Thermally driven reversible photoluminescence modulation in WS2/VO2 heterostructure. Applied Surface Science, 2019, 480, 680-688.	3.1	7
33	Multiscale Photonic Emissivity Engineering for Relativistic Lightsail Thermal Regulation. Nano Letters, 2022, 22, 594-601.	4.5	7
34	Selective Oxidation of WS ₂ Defect Domain with Subâ€Monolayer Thickness Leads to Multifold Enhancement in Photoluminescence. Advanced Materials Interfaces, 2019, 6, 1900962.	1.9	6
35	Structural and spectroscopic characterization of pyrene derived carbon nano dots: a single-particle level analysis. Nanoscale, 2022, 14, 3568-3578.	2.8	6
36	Polymorphic In-Plane Heterostructures of Monolayer WS ₂ for Light-Triggered Field-Effect Transistors. ACS Applied Nano Materials, 2020, 3, 3750-3759.	2.4	5

#	Article	IF	CITATIONS
37	In-situ study of exchange-bias in interlayer coupled Co/CoO/Co trilayer structure. Journal of Magnetism and Magnetic Materials, 2020, 513, 167186.	1.0	4
38	Efficacy of boron nitride encapsulation against plasma-processing of 2D semiconductor layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	4
39	Interfacial Reaction and Diffusion at the One-Dimensional Interface of Two-Dimensional PtSe ₂ . Nano Letters, 2022, 22, 4733-4740.	4.5	3
40	Temperature-dependent conduction mechanism of vertically aligned graphene nanoflakes incorporated with nitrogenin situ. Materials Research Express, 2017, 4, 075011.	0.8	0
41	Electron energy loss spectroscopy of sub-10 nm 2D MoS2 crystals. Microscopy and Microanalysis, 2021, 27, 1210-1211.	0.2	O