
Piyal Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere, 2020, 259, 127509.	4.2	176
2	Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. Chemosphere, 2021, 263, 128370.	4.2	74
3	Preparation and characterization of novel green synthesized iron–aluminum nanocomposite and studying its efficiency in fluoride removal. Chemosphere, 2019, 235, 391-402.	4.2	73
4	Green synthesized iron nanoparticles supported on pH responsive polymeric membrane for nitrobenzene reduction and fluoride rejection study: Optimization approach. Journal of Cleaner Production, 2018, 170, 1111-1123.	4.6	57
5	Treatment of steel plant generated biological oxidation treated (BOT) wastewater by hybrid process. Separation and Purification Technology, 2021, 258, 118013.	3.9	49
6	Introduction to Membranes. Interface Science and Technology, 2018, 25, 1-37.	1.6	45
7	Effect of Polyethylene glycol methyl ether blend Humic acid on poly (vinylidene) Tj ETQq1 1 0.784314 rgBT /Ove with optimization approach. Polymer Testing, 2017, 61, 162-176.	erlock 10 T 2.3	f 50 507 Td (28
8	Effect of different molecular weight polyethylene glycol on flat sheet cellulose acetate membranes for evaluating power density performance in pressure retarded osmosis study. Journal of Water Process Engineering, 2019, 30, 100632.	2.6	28
9	Physico-chemical and adsorption study of hydrothermally treated zeolite A and FAU-type zeolite X prepared from LD (Linz–Donawitz) slag of the steel industry. International Journal of Environmental Analytical Chemistry, 0, , 1-23.	1.8	28
10	Selective glucose permeability in presence of various salts through tunable pore size of pH responsive PVDF-co-HFP membrane. Separation and Purification Technology, 2019, 221, 249-260.	3.9	25
11	Preparation and characterization of zeolite from waste Linz-Donawitz (LD) process slag of steel industry for removal of Fe3+ from drinking water. Advanced Powder Technology, 2021, 32, 3372-3387.	2.0	25
12	Thin-film composite nanofiltration hollow fiber membranes toward textile industry effluent treatment and environmental remediation applications: review. Emergent Materials, 2022, 5, 1409-1427.	3.2	22
13	Green synthesized iron nanoparticle-embedded pH-responsive PVDF-co-HFP membranes: Optimization study for NPs preparation and nitrobenzene reduction. Separation Science and Technology, 2017, 52, 2338-2355.	1.3	14
14	High performance graphene-oxide doped cellulose acetate based ion exchange membrane for environmental remediation applications. International Journal of Environmental Analytical Chemistry, 2023, 103, 7751-7772.	1.8	13
15	pH-Responsive Membranes. Interface Science and Technology, 2018, , 39-66.	1.6	12
16	Photoresponsive Membranes. Interface Science and Technology, 2018, , 115-144.	1.6	11
17	Recovery of H2SO4 from wastewater in the presence of NaCl and KHCO3 through pH responsive polysulfone membrane: Optimization approach. Polymer Testing, 2020, 86, 106463.	2.3	11
18	Biologically Responsive Membranes. Interface Science and Technology, 2018, 25, 145-171.	1.6	8

PIYAL MONDAL

#	Article	IF	CITATIONS
19	Magnetic-Responsive Membranes. Interface Science and Technology, 2018, , 193-219.	1.6	8
20	Electric Field-Responsive Membranes. Interface Science and Technology, 2018, , 173-191.	1.6	7
21	Temperature-Responsive Membranes. Interface Science and Technology, 2018, 25, 67-113.	1.6	6
22	Adsorptive Removal of Phosphate from Aqueous Solution by Magnetic-Supported Kaolinite: Characteristics, Isotherm and Kinetic Studies. Open Journal of Applied Sciences, 2019, 09, 544-563.	0.2	4
23	Ultrasound-Responsive Membranes. Interface Science and Technology, 2018, 25, 221-237.	1.6	2
24	Pervaporation. , 2020, , 99-120.		1
25	Membrane contactors. , 2020, , 143-162.		1
26	Applications of thermal induced membrane separation processes. , 2020, , 251-267.		1
27	Green Synthesized Carbon and Metallic Nanomaterials for Biofuel Production: Effect of Operating Parameters. Clean Energy Production Technologies, 2022, , 105-126.	0.3	1
28	Thermal induced membrane separation processes: an introduction. , 2020, , 1-16.		0
29	Membrane materials and modification for thermal induced membrane separation processes. , 2020, , 41-53.		Ο
30	Fabrication and characterization techniques for thermal induced membrane separation processes. , 2020, , 55-76.		0
31	Membrane distillation. , 2020, , 77-97.		Ο
32	Theoretical aspects, design, and modeling in thermal induced membrane separation processes. , 2020, , 17-39.		0
33	Membrane crystallization. , 2020, , 121-142.		Ο
34	Membrane reactors and their applications in thermal induced membrane separation processes. , 2020, , 163-186.		0
35	Novel smart, super-hydrophobic, and next generation membranes for thermal induced membrane separation processes. , 2020, , 187-202.		0
36	Membrane processes in integrated systems. , 2020, , 203-227.		0

#	Article	IF	CITATIONS
37	Fouling and its mitigation in thermal induced membrane separation processes. , 2020, , 229-249.		Ο
38	Advancements in thermal induced membrane separation processes. , 2020, , 269-295.		0
39	Bio-based Polymeric Nanocomposites for Stimuli-Responsive Membranes. , 2021, , 1-28.		Ο
40	Bio-based Polymeric Nanocomposites for Stimuli-Responsive Membranes. , 2021, , 781-808.		0