
Jingqi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154069/publications.pdf Version: 2024-02-01

ΙΝΟΟΙ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Size-controllable core/shell whey protein microgels with narrow particle size distribution fabricated by a facile method. Food Hydrocolloids, 2022, 124, 107316.	10.7	9
2	Complexation of nanofibrillated egg white protein and low methoxy pectin improves microstructure, stability, and rheology of oil-in-water emulsions. Food Hydrocolloids, 2022, 124, 107262.	10.7	24
3	Develop and characterize thermally reversible transparent gels from pea protein isolate and study the gel formation mechanisms. Food Hydrocolloids, 2022, 125, 107373.	10.7	26
4	Contribution of protein microgels, protein molecules, and polysaccharides to the emulsifying behaviors of core/shell whey protein-alginate microgel systems. Food Hydrocolloids, 2022, 129, 107670.	10.7	11
5	Structuring of acidic oil-in-water emulsions by controlled aggregation of nanofibrillated egg white protein in the aqueous phase using sodium hexametaphosphate. Food Hydrocolloids, 2021, 112, 106359.	10.7	19
6	Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles. Food Hydrocolloids, 2021, 113, 106477.	10.7	59
7	Strong and elastic pea protein hydrogels formed through pH-shifting method. Food Hydrocolloids, 2021, 117, 106705.	10.7	42
8	Extraction methods significantly impact pea protein composition, structure and gelling properties. Food Hydrocolloids, 2021, 117, 106678.	10.7	81
9	Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. Journal of Hazardous Materials, 2021, 420, 126599.	12.4	77
10	Fabrication and characterization of lentil protein gels from fibrillar aggregates and the gelling mechanism study. Food and Function, 2020, 11, 10114-10125.	4.6	28
11	Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups. Chemical Engineering Journal, 2020, 393, 124796.	12.7	140
12	Mechanically Strong and Highly Tough Prolamin Protein Hydrogels Designed from Double-Cross-Linked Assembled Networks. ACS Applied Polymer Materials, 2019, 1, 1272-1279.	4.4	16
13	Facile Preparation of Self-Standing Hierarchical Porous Nitrogen-Doped Carbon Fibers for Supercapacitors from Plant Protein–Lignin Electrospun Fibers. ACS Omega, 2018, 3, 4647-4656.	3.5	38
14	Chitin Nanofibrils to Stabilize Long-Life Pickering Foams and Their Application for Lightweight Porous Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 10552-10561.	6.7	61
15	One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chemical Engineering Journal, 2017, 315, 573-582.	12.7	44
16	Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocolloids, 2017, 62, 21-34.	10.7	75
17	Improved thermal gelation of oat protein with the formation of controlled phase-separated networks using dextrin and carrageenan polysaccharides. Food Research International, 2016, 82, 95-103.	6.2	65
18	Convenient Fabrication of Electrospun Prolamin Protein Delivery System with Three-Dimensional Shapeability and Resistance to Fouling. ACS Applied Materials & Interfaces, 2015, 7, 13422-13430.	8.0	16

Jingqi Yang

#	Article	IF	CITATIONS
19	Inulin at low concentrations significantly improves the gelling properties of oat protein – A molecular mechanism study. Food Hydrocolloids, 2015, 50, 116-127.	10.7	55
20	Cellulose Nanowhiskers and Fiber Alignment Greatly Improve Mechanical Properties of Electrospun Prolamin Protein Fibers. ACS Applied Materials & Interfaces, 2014, 6, 1709-1718.	8.0	79
21	Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocolloids, 2014, 40, 225-236.	10.7	68
22	Elaboration and characterization of barley protein nanoparticles as an oral delivery system for lipophilic bioactive compounds. Food and Function, 2014, 5, 92-101.	4.6	50
23	Effects of partial hydrolysis on structure and gelling properties of oat globular proteins. Food Research International, 2014, 55, 418-425.	6.2	79
24	Fabrication and characterization of novel assembled prolamin protein nanofabrics with improved stability, mechanical property and release profiles. Journal of Materials Chemistry, 2012, 22, 21592.	6.7	59
25	Electrospinning of Prolamin Proteins in Acetic Acid: The Effects of Protein Conformation and Aggregation in Solution. Macromolecular Materials and Engineering, 2012, 297, 902-913.	3.6	60
26	Functionality of Barley Proteins Extracted and Fractionated by Alkaline and Alcohol Methods. Cereal Chemistry, 2010, 87, 597-606.	2.2	97
27	Chitosan∫î²-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials, 2005, 26, 6041-6053.	11.4	212