
Manoranjan Nayak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. Science of the Total Environment, 2022, 802, 149765.	3.9	63
2	Directed evolution of Chlorella sp. HS2 towards enhanced lipid accumulation by ethyl methanesulfonate mutagenesis in conjunction with fluorescence-activated cell sorting based screening. Fuel, 2022, 316, 123410.	3.4	13
3	Strategic implementation of integrated bioaugmentation and biostimulation for efficient mitigation of petroleum hydrocarbon pollutants from terrestrial and aquatic environment. Marine Pollution Bulletin, 2022, 177, 113492.	2.3	16
4	Microalgae as an Effective Recovery Agent for Vanadium in Aquatic Environment. Energies, 2022, 15, 4467.	1.6	4
5	Bio-inspired CO2 capture and utilization by microalgae for bioenergy feedstock production: A greener approach for environmental protection. Bioresource Technology Reports, 2022, 19, 101116.	1.5	11
6	Hydrodynamic cavitation for bacterial disinfection and medium recycling for sustainable Ettlia sp. cultivation. Journal of Environmental Chemical Engineering, 2021, 9, 105411.	3.3	8
7	Enhanced biodegradation of total petroleum hydrocarbons by implementing a novel two-step bioaugmentation strategy using indigenous bacterial consortium. Journal of Environmental Management, 2021, 292, 112746.	3.8	27
8	Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications. Journal of Environmental Management, 2020, 271, 111041.	3.8	12
9	Efficient microalgae removal from aqueous medium through auto-flocculation: investigating growth-dependent role of organic matter. Environmental Science and Pollution Research, 2019, 26, 27396-27406.	2.7	10
10	Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability. Renewable Energy, 2019, 136, 819-827.	4.3	27
11	Efficient microalgae harvesting mediated by polysaccharides interaction with residual calcium and phosphate in the growth medium. Journal of Cleaner Production, 2019, 234, 150-156.	4.6	16
12	Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Science of the Total Environment, 2019, 682, 475-484.	3.9	61
13	Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresource Technology, 2019, 276, 110-118.	4.8	71
14	Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Conversion and Management, 2018, 156, 45-52.	4.4	73
15	Artificial intelligence driven process optimization for cleaner production of biomass with co-valorization of wastewater and flue gas in an algal biorefinery. Journal of Cleaner Production, 2018, 201, 1092-1100.	4.6	81
16	Recent Inventions and Trends in Algal Biofuels Research. Recent Patents on Biotechnology, 2016, 10, 30-42.	0.4	12
17	Cultivation of freshwater microalga <i>Scenedesmus</i> sp. using a low-cost inorganic fertilizer for enhanced biomass and lipid yield. Journal of General and Applied Microbiology, 2016, 62, 7-13.	0.4	20
18	Sustainable valorization of flue gas CO ₂ and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems. RSC Advances, 2016, 6, 91111-91120.	1.7	50

MANORANJAN NAYAK

#	Article	IF	CITATIONS
19	Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Research, 2016, 16, 216-223.	2.4	183
20	Maximizing Biomass Productivity and CO2 Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide. Journal of Microbiology and Biotechnology, 2013, 23, 1260-1268.	0.9	39
21	Survey and Documentation of Brackish Water Algal Diversity from East Coast Region of Odisha, India. World Environment, 2012, 1, 20-23.	0.4	4
22	Microalgae of Odisha Coast as a Potential Source for Biodiesel Production. World Environment, 2012, 2, 12-17.	0.4	43
23	Screening of Fresh Water Microalgae from Eastern Region of India for Sustainable Biodiesel Production. International Journal of Green Energy, 2011, 8, 669-683.	2.1	25