Alexandra E Butler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154022/publications.pdf

Version: 2024-02-01

118 papers

8,711 citations

34 h-index 91 g-index

122 all docs

122 docs citations

122 times ranked 9440 citing authors

#	Article	IF	Citations
1	Controversies Around the Measurement of Blood Ketones to Diagnose and Manage Diabetic Ketoacidosis. Diabetes Care, 2022, 45, 267-272.	4.3	12
2	The role of exosomal miRNA in nonalcoholic fatty liver disease. Journal of Cellular Physiology, 2022, 237, 2078-2094.	2.0	25
3	Hypoglycemia Impairs the Heat Shock Protein Response: A Risk for Heat Shock in Cattle?. Frontiers in Veterinary Science, 2022, 9, 822310.	0.9	O
4	Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications. Nature Communications, 2022, 13, 946.	5 . 8	30
5	Diagnostic and Prognostic Protein Biomarkers of \hat{l}^2 -Cell Function in Type 2 Diabetes and Their Modulation with Glucose Normalization. Metabolites, 2022, 12, 196.	1.3	5
6	Investigation of the Effect of Curcumin on Protein Targets in NAFLD Using Bioinformatic Analysis. Nutrients, 2022, 14, 1331.	1.7	11
7	The effect of glucagonâ€like peptideâ€l receptor agonists on serum uric acid concentration: A systematic review and metaâ€analysis. British Journal of Clinical Pharmacology, 2022, 88, 3627-3637.	1.1	10
8	Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes, Obesity and Metabolism, 2022, 24, 1483-1497.	2.2	1
9	Cardiovascular protection conferred by glucagonâ€like peptideâ€1 receptor agonists: A role for serum uric acid reduction?. British Journal of Clinical Pharmacology, 2022, 88, 4237-4238.	1.1	0
10	Regulatory Effects of Statins on SIRT1 and Other Sirtuins in Cardiovascular Diseases. Life, 2022, 12, 760.	1.1	4
11	The regulation of efferocytosis signaling pathways and adipose tissue homeostasis in physiological conditions and obesity: Current understanding and treatment options. Obesity Reviews, 2022, 23, .	3.1	6
12	Diagnosing type 2 diabetes using Hemoglobin A1c: a systematic review and meta-analysis of the diagnostic cutpoint based on microvascular complications. Acta Diabetologica, 2021, 58, 279-300.	1.2	10
13	Letter to the Editor: Do biomarkers of COVID-19 severity simply reflect a stress response in type 2 diabetes: Biomarker response to hypoglycemia. Metabolism: Clinical and Experimental, 2021, 114, 154417.	1.5	2
14	Hypoglycaemia in type <scp>2</scp> diabetes exacerbates amyloidâ€related proteins associated with dementia. Diabetes, Obesity and Metabolism, 2021, 23, 338-349.	2.2	17
15	Chromogranin Aâ€positive hormoneâ€negative endocrine cells in pancreas in human pregnancy. Endocrinology, Diabetes and Metabolism, 2021, 4, e00223.	1.0	0
16	Biomarkers of COVID-19 severity may not serve patients with polycystic ovary syndrome. Journal of Translational Medicine, 2021, 19, 63.	1.8	2
17	Vitamin D Association With Macrophage-Derived Cytokines in Polycystic Ovary Syndrome: An Enhanced Risk of COVID-19 Infection?. Frontiers in Endocrinology, 2021, 12, 638621.	1.5	11
18	The relationship of soluble neuropilin-1 to severe COVID-19 risk factors in polycystic ovary syndrome. Metabolism Open, 2021, 9, 100079.	1.4	8

#	Article	IF	Citations
19	Glucose excursions in type 2 diabetes modulate amyloid-related proteins associated with dementia. Journal of Translational Medicine, 2021, 19, 131.	1.8	6
20	Identification of macrophage activation-related biomarkers in obese type 2 diabetes that may be indicative of enhanced respiratory risk in COVID-19. Scientific Reports, 2021, 11, 6428.	1.6	13
21	apoA2 correlates to gestational age with decreased apolipoproteins A2, C1, C3 and E in gestational diabetes. BMJ Open Diabetes Research and Care, 2021, 9, e001925.	1.2	7
22	Differing endometrial expression of calcium modulating transient receptor potential channels. Journal of Translational Medicine, 2021, 19, 113.	1.8	0
23	Mapping of type 2 diabetes proteins to COVID-19 biomarkers: A proteomic analysis. Metabolism Open, 2021, 9, 100074.	1.4	3
24	Platelet Protein-Related Abnormalities in Response to Acute Hypoglycemia in Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 651009.	1.5	7
25	Metabolic consequences of obesity on the hypercoagulable state of polycystic ovary syndrome. Scientific Reports, 2021, 11, 5320.	1.6	16
26	Plasma heat shock protein response to euglycemia in type 2 diabetes. BMJ Open Diabetes Research and Care, 2021, 9, e002057.	1.2	12
27	Amyloid-related protein changes associated with dementia differ according to severity of hypoglycemia. BMJ Open Diabetes Research and Care, 2021, 9, e002211.	1.2	4
28	Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Research Reviews, 2021, 67, 101313.	5.0	12
29	The retinopathyâ€derived HbA1c threshold of 6.5% for type 2 diabetes also captures the risk of diabetic nephropathy in <scp>NHANES</scp> . Diabetes, Obesity and Metabolism, 2021, 23, 2109-2115.	2.2	8
30	Type 2 Diabetes Coagulopathy Proteins May Conflict With Biomarkers Reflective of COVID-19 Severity. Frontiers in Endocrinology, 2021, 12, 658304.	1.5	3
31	Soluble Neuropilin-1 Response to Hypoglycemia in Type 2 Diabetes: Increased Risk or Protection in SARS-CoV-2 Infection?. Frontiers in Endocrinology, 2021, 12, 665134.	1.5	2
32	Vitamin D association with coagulation factors in polycystic ovary syndrome is dependent upon body mass index. Journal of Translational Medicine, 2021, 19, 239.	1.8	5
33	Vitamin D deficiency effects on cardiovascular parameters in women with polycystic ovary syndrome: A retrospective, cross-sectional study. Journal of Steroid Biochemistry and Molecular Biology, 2021, 211, 105892.	1.2	4
34	Impact of severe hypoglycemia on the heat shock and related protein response. Scientific Reports, 2021, 11, 17057.	1.6	9
35	Association of microRNAs With Embryo Development and Fertilization in Women Undergoing Subfertility Treatments: A Pilot Study. Frontiers in Reproductive Health, 2021, 3, .	0.6	4
36	Angiopoietin-1: an early biomarker of diabetic nephropathy?. Journal of Translational Medicine, 2021, 19, 427.	1.8	6

3

#	Article	IF	CITATIONS
37	Vitamin D association with the renin angiotensin system in polycystic ovary syndrome. Journal of Steroid Biochemistry and Molecular Biology, 2021, 214, 105965.	1.2	4
38	Relationship between total vitamin D metabolites and complications in patients with type 2 diabetes. Biomedical Reports, 2021, 14, 18.	0.9	4
39	Hypoglycemia-induced changes in complement pathways in type 2 diabetes. Atherosclerosis Plus, 2021, ,	0.3	2
40	Heat Shock-Related Protein Responses and Inflammatory Protein Changes Are Associated with Mild Prolonged Hypoglycemia. Cells, 2021, 10, 3109.	1.8	4
41	Potential Biomarkers to Predict Acute Ischemic Stroke in Type 2 Diabetes. Frontiers in Molecular Biosciences, 2021, 8, 744459.	1.6	5
42	The Impact of Incretin-Based Medications on Lipid Metabolism. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	12
43	Association of vitamin D ₃ and its metabolites in patients with and without type 2 diabetes and their relationship to diabetes complications. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232092415.	1.1	18
44	Renin-Angiotensin System overactivation in polycystic ovary syndrome, a risk for SARS-CoV-2 infection?. Metabolism Open, 2020, 7, 100052.	1.4	20
45	Qatari Genotype May Contribute to Complications in Type 2 Diabetes. Journal of Diabetes Research, 2020, 2020, 1-6.	1.0	1
46	Distinguishing between type 1 and type 2 diabetes. BMJ, The, 2020, 370, m2998.	3.0	15
47	Increased MicroRNA Levels in Women With Polycystic Ovarian Syndrome but Without Insulin Resistance: A Pilot Prospective Study. Frontiers in Endocrinology, 2020, 11, 571357.	1.5	14
48	Vitamin D3 metabolite ratio as an indicator of vitamin D status and its association with diabetes complications. BMC Endocrine Disorders, 2020, 20, 161.	0.9	17
49	Pro-fibrotic M2 macrophage markers may increase the risk for COVID19 in type 2 diabetes with obesity. Metabolism: Clinical and Experimental, 2020, 112, 154374.	1.5	6
50	Metabolic comparison of polycystic ovarian syndrome and control women in Middle Eastern and UK Caucasian populations. Scientific Reports, 2020, 10, 18895.	1.6	9
51	Association of vitamin D2 and D3 with type 2 diabetes complications. BMC Endocrine Disorders, 2020, 20, 65.	0.9	22
52	Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Scientific Reports, 2020, 10, 4750.	1.6	69
53	Long non-coding RNA expression in non-obese women with polycystic ovary syndrome and weight-matched controls. Reproductive BioMedicine Online, 2020, 41, 579-583.	1.1	2
54	Renin-Angiotensin System Overactivation in Type 2 Diabetes: A Risk for SARS-CoV-2 Infection?. Diabetes Care, 2020, 43, e131-e133.	4.3	7

#	Article	IF	CITATIONS
55	microRNA Expression in Women With and Without Polycystic Ovarian Syndrome Matched for Body Mass Index. Frontiers in Endocrinology, 2020, $11,206$.	1.5	21
56	Association of Differing Qatari Genotypes with Vitamin D Metabolites. International Journal of Endocrinology, 2020, 2020, 1-6.	0.6	4
57	COVID-19 biomarkers for severity mapped to polycystic ovary syndrome. Journal of Translational Medicine, 2020, 18, 490.	1.8	7
58	Relationship between total vitaminÂD metabolites and complications in patients with typeÂ2 diabetes. Biomedical Reports, 2020, 14, 18.	0.9	11
59	Curcumin nanofibers for the purpose of wound healing. Journal of Cellular Physiology, 2019, 234, 5537-5554.	2.0	90
60	Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discovery Today, 2019, 24, 256-262.	3.2	87
61	Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. Journal of Cellular Physiology, 2019, 234, 223-230.	2.0	97
62	Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. Journal of Cellular Physiology, 2019, 234, 1165-1178.	2.0	113
63	The protective role of curcumin in myocardial ischemia–reperfusion injury. Journal of Cellular Physiology, 2019, 234, 214-222.	2.0	125
64	Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Current Diabetes Reports, 2019, 19, 83.	1.7	88
65	Alterations in long noncoding RNAs in women with and without polycystic ovarian syndrome. Clinical Endocrinology, 2019, 91, 793-797.	1.2	15
66	Expression of microRNA in follicular fluid in women with and without PCOS. Scientific Reports, 2019, 9, 16306.	1.6	50
67	Characterization of Non-hormone Expressing Endocrine Cells in Fetal and Infant Human Pancreas. Frontiers in Endocrinology, 2019, 9, 791.	1.5	2
68	A response to "ln response to â€~Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways'― Journal of Cellular Physiology, 2019, 234, 9908-9909.	2.0	2
69	Expression and localization of transient receptor potential channels in the bovine uterus epithelium throughout the estrous cycle. Molecular Biology Reports, 2019, 46, 4077-4084.	1.0	1
70	IAPP toxicity activates HIF1 \hat{i} ±/PFKFB3 signaling delaying \hat{i} 2-cell loss at the expense of \hat{i} 2-cell function. Nature Communications, 2019, 10, 2679.	5.8	55
71	Islet amyloidosis in a child with type 1 diabetes. Islets, 2019, 11, 44-49.	0.9	17
72	Pregnancy in human IAPP transgenic mice recapitulates beta cell stress in type 2 diabetes. Diabetologia, 2019, 62, 1000-1010.	2.9	9

#	Article	IF	CITATIONS
73	Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. Journal of Cellular Physiology, 2019, 234, 2436-2446.	2.0	71
74	Liposomal nanocarriers for statins: A pharmacokinetic and pharmacodynamics appraisal. Journal of Cellular Physiology, 2019, 234, 1219-1229.	2.0	18
7 5	Curcumin as a therapeutic agent in leukemia. Journal of Cellular Physiology, 2019, 234, 12404-12414.	2.0	45
76	Sodium–glucose cotransporter inhibitors and oxidative stress: An update. Journal of Cellular Physiology, 2019, 234, 3231-3237.	2.0	99
77	Impact of curcumin on tollâ€ike receptors. Journal of Cellular Physiology, 2019, 234, 12471-12482.	2.0	48
78	Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. Journal of Cellular Physiology, 2019, 234, 12508-12515.	2.0	23
79	Mechanisms of statinâ€induced newâ€onset diabetes. Journal of Cellular Physiology, 2019, 234, 12551-12561.	2.0	36
80	The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends in Cardiovascular Medicine, 2019, 29, 313-323.	2.3	112
81	Therapeutic use of curcuminâ€encapsulated and curcuminâ€primed exosomes. Journal of Cellular Physiology, 2019, 234, 8182-8191.	2.0	81
82	Protective effects of plantâ€derived natural products on renal complications. Journal of Cellular Physiology, 2019, 234, 12161-12172.	2.0	28
83	Antidiabetic potential of saffron and its active constituents. Journal of Cellular Physiology, 2019, 234, 8610-8617.	2.0	41
84	Hormetic effects of curcumin: What is the evidence?. Journal of Cellular Physiology, 2019, 234, 10060-10071.	2.0	67
85	Genetics and rheumatoid arthritis susceptibility in Iran. Journal of Cellular Physiology, 2019, 234, 5578-5587.	2.0	10
86	Efficacy of artichoke leaf extract in nonâ€alcoholic fatty liver disease: A pilot doubleâ€blind randomized controlled trial. Phytotherapy Research, 2018, 32, 1382-1387.	2.8	43
87	The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. Journal of Cellular Physiology, 2018, 233, 6530-6537.	2.0	79
88	Curcumin in heart failure: A choice for complementary therapy?. Pharmacological Research, 2018, 131, 112-119.	3.1	40
89	Pathways governing development of stem cellâ€derived pancreatic β cells: lessons from embryogenesis. Biological Reviews, 2018, 93, 364-389.	4.7	37
90	MicroRNAs: Novel Molecular Targets and Response Modulators of Statin Therapy. Trends in Pharmacological Sciences, 2018, 39, 967-981.	4.0	48

#	Article	IF	Citations
91	The effect of statin therapy on endoplasmic reticulum stress. Pharmacological Research, 2018, 137, 150-158.	3.1	35
92	An Increase in Chromogranin A-Positive, Hormone-Negative Endocrine Cells in Pancreas in Cystic Fibrosis. Journal of the Endocrine Society, 2018, 2, 1058-1066.	0.1	8
93	Therapeutic potential of curcumin in diabetic complications. Pharmacological Research, 2018, 136, 181-193.	3.1	155
94	The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Research Reviews, 2018, 47, 183-197.	5.0	189
95	Impact of fibrates on circulating cystatin C levels: a systematic review and meta-analysis of clinical trials. Annals of Medicine, 2018, 50, 485-493.	1.5	7
96	Monocyteâ€toâ€HDLâ€cholesterol ratio as a prognostic marker in cardiovascular diseases. Journal of Cellular Physiology, 2018, 233, 9237-9246.	2.0	169
97	Increased Chromogranin A–Positive Hormone-Negative Cells in Chronic Pancreatitis. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2126-2135.	1.8	19
98	In the setting of \hat{l}^2 -cell stress, the pancreatic duct gland transcriptome shows characteristics of an activated regenerative response. American Journal of Physiology - Renal Physiology, 2018, 315, G848-G854.	1.6	4
99	Increased Proliferation of the Pancreatic Duct Gland Compartment in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-3001.	1.8	18
100	Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary?. Diabetologia, 2017, 60, 753-755.	2.9	7
101	Cell cycle–related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line. Cell Cycle, 2017, 16, 2086-2099.	1.3	27
102	Down Syndrome-Associated Diabetes Is Not Due To a Congenital Deficiency in \hat{l}^2 Cells. Journal of the Endocrine Society, 2017, 1, 39-45.	0.1	7
103	Pancreatic Nonhormone Expressing Endocrine Cells in Children With Type 1 Diabetes. Journal of the Endocrine Society, 2017, 1, 385-395.	0.1	22
104	Neuropeptide Y expression marks partially differentiated \hat{l}^2 cells in mice and humans. JCI Insight, 2017, 2, .	2.3	41
105	Recovery of high-quality RNA from laser capture microdissected human and rodent pancreas. Journal of Histotechnology, 2016, 39, 59-65.	0.2	26
106	Increased Frequency of Hormone Negative and Polyhormonal Endocrine Cells in Lean Individuals With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3628-3636.	1.8	51
107	Increased Hormone-Negative Endocrine Cells in the Pancreas in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3487-3496.	1.8	50
108	Evaluation of immunohistochemical staining for glucagon in human pancreatic tissue. Journal of Histotechnology, 2016, 39, 8-16.	0.2	3

#	Article	IF	CITATIONS
109	\hat{l}^2 -Cell Deficit in Obese Type 2 Diabetes, a Minor Role of \hat{l}^2 -Cell Dedifferentiation and Degranulation. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 523-532.	1.8	107
110	Î ² -Cell Identity in Type 2 Diabetes: Lost or Found?: Figure 1. Diabetes, 2015, 64, 2698-2700.	0.3	9
111	Marked Expansion of Exocrine and Endocrine Pancreas With Incretin Therapy in Humans With Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine Tumors. Diabetes, 2013, 62, 2595-2604.	0.3	381
112	Reponse to Comments on: Butler et al. Marked Expansion of Exocrine and Endocrine Pancreas With Incretin Therapy in Humans With Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine Tumors. Diabetes 2013;62:2595-2604. Diabetes, 2013, 62, e19-e22.	0.3	11
113	β-Cell Dysfunctional ERAD/Ubiquitin/Proteasome System in Type 2 Diabetes Mediated by Islet Amyloid Polypeptide–Induced UCH-L1 Deficiency. Diabetes, 2011, 60, 227-238.	0.3	103
114	\hat{l}^2 -Cell Replication Is the Primary Mechanism Subserving the Postnatal Expansion of \hat{l}^2 -Cell Mass in Humans. Diabetes, 2008, 57, 1584-1594.	0.3	616
115	Relationship Between Â-Cell Mass and Fasting Blood Glucose Concentration in Humans. Diabetes Care, 2006, 29, 717-718.	4.3	184
116	Diabetes Due to a Progressive Defect in Â-Cell Mass in Rats Transgenic for Human Islet Amyloid Polypeptide (HIP Rat): A New Model for Type 2 Diabetes. Diabetes, 2004, 53, 1509-1516.	0.3	239
117	Â-Cell Deficit and Increased Â-Cell Apoptosis in Humans With Type 2 Diabetes. Diabetes, 2003, 52, 102-110.	0.3	3,615
118	Increased Â-Cell Apoptosis Prevents Adaptive Increase in Â-Cell Mass in Mouse Model of Type 2 Diabetes: Evidence for Role of Islet Amyloid Formation Rather Than Direct Action of Amyloid. Diabetes, 2003, 52, 2304-2314.	0.3	374