Johann P Klare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5153656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DEER Spectroscopy of Channelrhodopsin-2 Helix B Movements in Trapped Photocycle Intermediates. Applied Magnetic Resonance, 2022, 53, 731-743.	0.6	4
2	The Ras dimer structure. Chemical Science, 2021, 12, 8178-8189.	3.7	16
3	Structural and Biochemical Characterization of a Dye-Decolorizing Peroxidase from Dictyostelium discoideum. International Journal of Molecular Sciences, 2021, 22, 6265.	1.8	11
4	Dynamic interactions of CbiN and CbiM trigger activity of a cobalt energy-coupling-factor transporter. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183114.	1.4	5
5	Magnetic and Electronic Properties of Highly Mn-Doped β-NaGdF ₄ and β-NaEuF ₄ Nanoparticles with a Narrow Size Distribution. Journal of Physical Chemistry C, 2020, 124, 18194-18202.	1.5	9
6	<i>In cell</i> Gd ³⁺ -based site-directed spin labeling and EPR spectroscopy of eGFP. Physical Chemistry Chemical Physics, 2020, 22, 13358-13362.	1.3	23
7	Heme binding of transmembrane signaling proteins undergoing regulated intramembrane proteolysis. Communications Biology, 2020, 3, 73.	2.0	13
8	Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183207.	1.4	16
9	Water splitting mediated by an electrocatalytically driven cyclic process involving iron oxide species. Journal of Materials Chemistry A, 2020, 8, 9896-9910.	5.2	19
10	Architecture of the pore forming toxin sticholysin I in membranes. Journal of Structural Biology, 2019, 208, 30-42.	1.3	8
11	Conformational Dynamics of Sensory Rhodopsin <scp>II</scp> in Nanolipoprotein and Styrene–Maleic Acid Lipid Particles. Photochemistry and Photobiology, 2019, 95, 1195-1204.	1.3	19
12	Sensory Rhodopsin II: Signal Development and Transduction. , 2019, , 1-6.		0
13	New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Scientific Reports, 2017, 7, 41811.	1.6	24
14	Sensory Rhodopsin I and Sensory Rhodopsin <scp>II</scp> Form Trimers of Dimers in Complex with their Cognate Transducers. Photochemistry and Photobiology, 2017, 93, 796-804.	1.3	20
15	Orthogonal spin labeling using click chemistry for in vitro and in vivo applications. Journal of Magnetic Resonance, 2017, 275, 38-45.	1.2	54
16	Cytosolic BNIP3 Dimer Interacts with Mitochondrial BAX Forming Heterodimers in the Mitochondrial Outer Membrane under Basal Conditions. International Journal of Molecular Sciences, 2017, 18, 687.	1.8	12
17	Electron Paramagnetic Resonance of Membrane Proteins. , 2017, , 442-446.		1
18	The Crystal Structure of the C-Terminal Domain of the Salmonella enterica PduO Protein: An Old Fold with a New Heme-Binding Mode. Frontiers in Microbiology, 2016, 7, 1010.	1.5	8

#	Article	IF	CITATIONS
19	EPR Studies of Vâ€ATPase with Spin‣abeled Inhibitors DCC and Archazolid: Interaction Dynamics with Proton Translocating Subunitâ€c. ChemMedChem, 2016, 11, 420-428.	1.6	12
20	Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance. Plant Physiology, 2016, 172, 1480-1493.	2.3	39
21	Characterization of multifunctional β-NaEuF ₄ /NaGdF ₄ core–shell nanoparticles with narrow size distribution. Nanoscale, 2016, 8, 2832-2843.	2.8	12
22	Mapping Motions and Structure to a State Necessary for Oligomerization of a Large GTPase: A Joint SAXS, NSE, EPR and FRET Study. Biophysical Journal, 2016, 110, 514a.	0.2	0
23	Application of site-directed spin labelling for studying conformational changes in the catalytic cycle of G proteins activated by dimerization. Electron Paramagnetic Resonance, 2016, , 157-179.	0.2	0
24	Light-Induced Switching of HAMP Domain Conformation and Dynamics Revealed by Time-Resolved EPR Spectroscopy. Biophysical Journal, 2015, 108, 259a.	0.2	0
25	Conformational heterogeneity of the Roc domains in <i>C. tepidum</i> Roc–COR and implications for human LRRK2 Parkinson mutations. Bioscience Reports, 2015, 35, .	1.1	17
26	Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Computational Biology, 2015, 11, e1004561.	1.5	15
27	In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. Physical Chemistry Chemical Physics, 2015, 17, 4875-4878.	1.3	45
28	Clustering and Dynamics of Phototransducer Signaling Domains Revealed by Site-Directed Spin Labeling Electron Paramagnetic Resonance on SRII/HtrII in Membranes and Nanodiscs. Biochemistry, 2015, 54, 349-362.	1.2	11
29	Spin Labeling Studies of Transmembrane Signaling and Transport. Methods in Enzymology, 2015, 564, 315-347.	0.4	5
30	Hydrogen bonding of nitroxide spin labels in membrane proteins. Physical Chemistry Chemical Physics, 2014, 16, 15910-15916.	1.3	20
31	Assembly and Function of the tRNA-Modifying GTPase MnmE Adsorbed to Surface Functionalized Bioactive Glass. ACS Applied Materials & Interfaces, 2014, 6, 7615-7625.	4.0	9
32	Triphosphate Induced Dimerization of Human Guanylate Binding Protein 1 Involves Association of the C-Terminal Helices: A Joint Double Electron–Electron Resonance and FRET Study. Biochemistry, 2014, 53, 4590-4600.	1.2	42
33	Lightâ€induced switching of HAMP domain conformation and dynamics revealed by timeâ€resolved EPR spectroscopy. FEBS Letters, 2014, 588, 3970-3976.	1.3	24
34	Applications of Structural Biology and Bioinformatics in the Investigation of Oxidative Stress-Related Processes. , 2014, , 505-534.		0
35	Conformational changes of the histidine ATP-binding cassette transporter studied by double electron–electron resonance spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1760-1768	1.4	12
36	Extracellular Loop 4 of the Proline Transporter PutP Controls the Periplasmic Entrance to Ligand Binding Sites. Structure, 2014, 22, 769-780.	1.6	19

#	Article	IF	CITATIONS
37	Sensory Rhodopsin II: Signal Development and Transduction. , 2013, , 2312-2315.		0
38	Site-directed spin labeling EPR spectroscopy in protein research. Biological Chemistry, 2013, 394, 1281-1300.	1.2	78
39	Ground state structure of D75N mutant of sensory rhodopsin II in complex with its cognate transducer. Journal of Photochemistry and Photobiology B: Biology, 2013, 123, 55-58.	1.7	10
40	Structural Information from Spin-Labelled Membrane-Bound Proteins. Structure and Bonding, 2013, , 205-248.	1.0	11
41	Highlight: The physiology and dynamics of cellular microcompartments. Biological Chemistry, 2013, 394, 149-150.	1.2	1
42	Chemistry of Spin Labeling. , 2013, , 287-293.		1
43	Conformational Changes in the Novel Redox Sensor Protein HbpS Studied by Site-Directed Spin Labeling and Its Turnover in Dependence on the Catalase-Peroxidase CpeB. Antioxidants and Redox Signaling, 2012, 16, 639-648.	2.5	11
44	Impact of ferredoxin:NADP(H) oxidoreductase on redox poise of the glutathione pool and Fenton reaction capacity of thylakoid membranes: A connection to pre-acquired acclimation in Arabidopsis. Free Radical Biology and Medicine, 2012, 53, S42.	1.3	4
45	Nitrite Regulates Hypoxic Vasodilation via Myoglobin-Dependent Nitric Oxide Generation. Circulation, 2012, 126, 325-334.	1.6	173
46	Conformational changes of the betaine transporter BetP from Corynebacterium glutamicum studied by pulse EPR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 359-366.	1.4	12
47	Biomedical applications of electron paramagnetic resonance (EPR) spectroscopy. Biomedical Spectroscopy and Imaging, 2012, 1, 101-124.	1.2	11
48	Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements. PLoS ONE, 2012, 7, e39492.	1.1	64
49	An Electron Paramagnetic Resonance Spectroscopic Investigation on the Growth Mechanism of NaYF ₄ :Gd Nanocrystals. Angewandte Chemie - International Edition, 2012, 51, 6506-6510.	7.2	47
50	The Signal Transfer from the Receptor NpSRII to the Transducer NpHtrII IsÂNot Hampered by the D75N Mutation. Biophysical Journal, 2011, 100, 2275-2282.	0.2	13
51	Transmembrane signal transduction in archaeal phototaxis: The sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. European Journal of Cell Biology, 2011, 90, 731-739.	1.6	30
52	Interconversion between bound and free conformations of LexA orchestrates the bacterial SOS response. Nucleic Acids Research, 2011, 39, 6546-6557.	6.5	61
53	Accessing the distance range of interest in biomolecules: Site-directed spin labeling and DEER spectroscopy, 2010, 24, 283-288.	0.8	9
54	Stabilization of G Domain Conformations in the tRNA-modifying MnmE-GidA Complex Observed with Double Electron Electron Resonance Spectroscopy. Journal of Biological Chemistry, 2010, 285, 16991-17000.	1.6	29

#	Article	IF	CITATIONS
55	RNA-Binding to Archaeal RNA Polymerase Subunits F/E: A DEER and FRET Study. Journal of the American Chemical Society, 2010, 132, 5954-5955.	6.6	49
56	Kissing G Domains of MnmE Monitored by X-Ray Crystallography and Pulse Electron Paramagnetic Resonance Spectroscopy. PLoS Biology, 2009, 7, e1000212.	2.6	40
57	Translational Diffusion and Interaction of a Photoreceptor and Its Cognate Transducer Observed in Giant Unilamellar Vesicles by Using Dualâ€Focus FCS. ChemBioChem, 2009, 10, 1823-1829.	1.3	33
58	Spin labeling EPR. Photosynthesis Research, 2009, 102, 377-390.	1.6	223
59	Primary Reaction of Sensory Rhodopsin II Mutant D75N and the Influence of Azide. Biochemistry, 2009, 48, 9677-9683.	1.2	5
60	Sensory rhodopsin II/transducer complex formation in detergent and in lipid bilayers studied with FRET. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 522-531.	1.4	14
61	Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR. Physical Chemistry Chemical Physics, 2009, 11, 6770.	1.3	15
62	Comparative analysis of sensory rhodopsin II structures in complex with a transducer and without it. Journal of Surface Investigation, 2008, 2, 894-899.	0.1	3
63	Transducer Binding Establishes Localized Interactions to Tune Sensory Rhodopsin II. Structure, 2008, 16, 1206-1213.	1.6	30
64	Microbial Rhodopsins: Scaffolds for Ion Pumps, Channels, and Sensors. , 2008, 45, 73-122.		78
65	Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10256-10261.	3.3	376
66	Salt-driven Equilibrium between Two Conformations in the HAMP Domain from Natronomonas pharaonis. Journal of Biological Chemistry, 2008, 283, 28691-28701.	1.6	43
67	Correction for Hendgen-Cotta <i>et al.</i> , Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12636-12636.	3.3	Ο
68	Expression of the halobacterial transducer protein Htrll fromNatronomonas pharaonisinEscherichia coli. FEBS Letters, 2007, 581, 1487-1494.	1.3	11
69	Analysis of Light-Induced Conformational Changes of Natronomonas pharaonis Sensory Rhodopsin II by Time Resolved Electron Paramagnetic Resonance Spectroscopyâ€. Photochemistry and Photobiology, 2007, 83, 263-272.	1.3	23
70	Primary Reaction of Sensory Rhodopsin II Mutant D75N. Springer Series in Chemical Physics, 2007, , 525-527.	0.2	0
71	Time-resolved methods in Biophysics. 1. A novel pump and probe surface-enhanced resonance Raman approach for studying biological photoreceptors. Photochemical and Photobiological Sciences, 2006, 5, 1103.	1.6	7
72	Effects of Solubilization on the Structure and Function of the Sensory Rhodopsin II/Transducer Complex. Journal of Molecular Biology, 2006, 356, 1207-1221.	2.0	44

#	Article	IF	CITATIONS
73	Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature, 2006, 440, 115-119.	13.7	169
74	High-field EPR and site-directed spin labeling reveal a periodical polarity profile: The sequence 88 to 94 of the phototransducer NpHtrII in complex with sensory rhodopsin, NpSRII. Applied Magnetic Resonance, 2006, 30, 359-372.	0.6	16
75	Thetrans–cis isomerization reaction dynamics in sensory rhodopsin II by femtosecond time-resolved midinfrared spectroscopy: Chromophore and protein dynamics. Biopolymers, 2006, 82, 358-362.	1.2	15
76	Time-resolved resonance Raman spectroscopy of sensory rhodopsin II in the micro- and millisecond time range using gated cw excitation. Journal of Raman Spectroscopy, 2006, 37, 436-441.	1.2	17
77	Primary Reaction of Sensory Rhodopsin II Mutant D75N. , 2006, , .		0
78	Structural Analysis of a HAMP Domain. Journal of Biological Chemistry, 2005, 280, 38767-38775.	1.6	66
79	The Hydroxylamine Reaction of Sensory Rhodopsin II: Light-Induced Conformational Alterations with C13C14 Nonisomerizable Pigment. Biophysical Journal, 2005, 89, 2610-2617.	0.2	11
80	Sensory rhodopsin II and bacteriorhodopsin: Light activated helix F movement. Photochemical and Photobiological Sciences, 2004, 3, 543.	1.6	64
81	Consequences of Counterion Mutation in Sensory Rhodopsin II of Natronobacterium pharaonis for Photoreaction and Receptor Activation: An FTIR Study. Biochemistry, 2004, 43, 995-1002.	1.2	16
82	The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Letters, 2004, 564, 219-224.	1.3	103
83	Probing the Sensory Rhodopsin II Binding Domain of its Cognate Transducer by Calorimetry and Electrophysiology. Journal of Molecular Biology, 2003, 330, 1203-1213.	2.0	57
84	Probing the Proton Channel and the Retinal Binding Site of Natronobacterium pharaonis Sensory Rhodopsin II. Biophysical Journal, 2002, 82, 2156-2164.	0.2	25
85	Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature, 2002, 419, 484-487	13.7	380
86	Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO Journal, 2001, 20, 5312-5319.	3.5	164