Akhilesh K Chaurasia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/515355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens. Applied and Environmental Microbiology, 2013, 79, 7800-7806.	3.1	99
2	Polyaniline-Based Highly Sensitive Microbial Biosensor for Selective Detection of Lindane. Analytical Chemistry, 2012, 84, 6672-6678.	6.5	98
3	Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality. Journal of Hazardous Materials, 2016, 306, 386-394.	12.4	77
4	Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Advances, 2015, 5, 47225-47234.	3.6	67
5	Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology (United Kingdom), 2014, 160, 647-658.	1.8	61
6	Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. Dalton Transactions, 2014, 43, 17343-17351.	3.3	59
7	An integrative expression vector for strain improvement and environmental applications of the nitrogen fixing cyanobacterium, Anabaena sp. strain PCC7120. Journal of Microbiological Methods, 2008, 73, 133-141.	1.6	56
8	Overexpression of the <i>groESL</i> Operon Enhances the Heat and Salinity Stress Tolerance of the Nitrogen-Fixing Cyanobacterium <i>Anabaena</i> sp. Strain PCC7120. Applied and Environmental Microbiology, 2009, 75, 6008-6012.	3.1	46
9	Improved Eco-Friendly Recombinant <i>Anabaena</i> sp. Strain PCC7120 with Enhanced Nitrogen Biofertilizer Potential. Applied and Environmental Microbiology, 2011, 77, 395-399.	3.1	41
10	Engineering bacteria for bioremediation of persistent organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresource Technology, 2013, 149, 439-445.	9.6	40
11	Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Scientific Reports, 2016, 6, 33662.	3.3	40
12	Performance evaluation of isolated electrogenic microalga coupled with graphene oxide for decolorization of textile dye wastewater and subsequent lipid production. Chemical Engineering Journal, 2019, 375, 121950.	12.7	34
13	Evidence of <i>Geobacter</i> -associated phage in a uranium-contaminated aquifer. ISME Journal, 2015, 9, 333-346.	9.8	28
14	Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Frontiers in Microbiology, 2014, 5, 245.	3.5	26
15	Identification and Validation of an Antivirulence Agent Targeting HlyU-Regulated Virulence in Vibrio vulnificus. Frontiers in Cellular and Infection Microbiology, 2018, 8, 152.	3.9	24
16	Alternative Enzyme Protection Assay To Overcome the Drawbacks of the Gentamicin Protection Assay for Measuring Entry and Intracellular Survival of Staphylococci. Infection and Immunity, 2019, 87, .	2.2	23
17	Targeting Mannitol Metabolism as an Alternative Antimicrobial Strategy Based on the Structure-Function Study of Mannitol-1-Phosphate Dehydrogenase in Staphylococcus aureus. MBio, 2019, 10, .	4.1	22
18	An Antibacterial Nanorobotic Approach for the Specific Targeting and Removal of Multiple Drugâ€Resistant <i>Staphylococcus aureus</i> . Small, 2021, 17, e2100257.	10.0	20

#	Article	IF	CITATIONS
19	Genetic evidence that the degradation of <i>para</i> -cresol by <i>Geobacter metallireducens</i> is catalyzed by the periplasmic <i>para</i> -cresol methylhydroxylase. FEMS Microbiology Letters, 2015, 362, fnv145.	1.8	9
20	Structural and functional study of ChuY from Escherichia coli strain CFT073. Biochemical and Biophysical Research Communications, 2017, 482, 1176-1182.	2.1	9
21	Functional Identification of Serine Hydroxymethyltransferase as a Key Gene Involved in Lysostaphin Resistance and Virulence Potential of Staphylococcus aureus Strains. International Journal of Molecular Sciences, 2020, 21, 9135.	4.1	9
22	Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential. Frontiers in Microbiology, 2020, 11, 613800.	3.5	8
23	Identification of 2′,4′-Dihydroxychalcone as an Antivirulence Agent Targeting HlyU, a Master Virulence Regulator in Vibrio vulnificus. Molecules, 2018, 23, 1492.	3.8	6
24	Tocopherol levels in different mango varieties correlate with MiHPPD expression and its over-expression elevates tocopherols in transgenic Arabidopsis and tomato. 3 Biotech, 2017, 7, 352.	2.2	4
25	In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120. Journal of Microbiology, 2015, 53, 837-846.	2.8	3
26	Draft Genome Sequences of Lysostaphin-Resistant (K07-204) and Lysostaphin-Susceptible (K07-561) Staphylococcus aureus Sequence Type 72 Strains Isolated from Patients in South Korea. Microbiology Resource Announcements, 2020, 9, .	0.6	2
27	Multiple Chaperonins in Cyanobacteria: Why One Is Not Enough!. Heat Shock Proteins, 2017, , 93-109.	0.2	0