Edmond Gravel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/515344/publications.pdf Version: 2024-02-01

		182225	252626
89	2,671	30	46
papers	citations	h-index	g-index
113	113	113	4014
all docs	docs citations	times ranked	citing authors

FOMOND CRAVEL

#	Article	IF	CITATIONS
1	Carbon nanotube-polyoxometalate nanohybrids as efficient electro-catalysts for the hydrogen evolution reaction. Carbon, 2022, 188, 523-532.	5.4	20
2	Catalytic hydrothiolation of alkenes and alkynes using bimetallic RuRh nanoparticles on carbon nanotubes. Green Chemistry, 2022, 24, 1231-1237.	4.6	11
3	Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. Journal of Colloid and Interface Science, 2022, 613, 359-367.	5.0	6
4	Vapor phase catalytic photooxidation of sulfides to sulfoxides: application to the neutralization of sulfur mustard simulants. Catalysis Science and Technology, 2022, 12, 1751-1755.	2.1	1
5	Easy-to-Implement Hydrogen Isotope Exchange for the Labeling of <i>N</i> -Heterocycles, Alkylkamines, Benzylic Scaffolds, and Pharmaceuticals. Jacs Au, 2022, 2, 801-808.	3.6	10
6	Fullerenes make copper catalysis better. Science, 2022, 376, 242-243.	6.0	9
7	Catalytic Processes for the Neutralization of Sulfur Mustard. Chemistry - A European Journal, 2021, 27, 54-68.	1.7	31
8	Tumor-targeted superfluorinated micellar probe for sensitive <i>in vivo</i> ¹⁹ F-MRI. Nanoscale, 2021, 13, 2373-2377.	2.8	19
9	Solvent-free hydrosilylation of alkenes and alkynes using recyclable platinum on carbon nanotubes. Green Chemistry, 2021, 23, 815-820.	4.6	23
10	Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material. Journal of the American Chemical Society, 2021, 143, 18150-18158.	6.6	16
11	Nanotoxicology at the particle/micelle frontier: influence of core-polymerization on the intracellular distribution, cytotoxicity and genotoxicity of polydiacetylene micelles. Nanoscale, 2020, 12, 2452-2463.	2.8	14
12	Selfâ€assembled Polydiacetylene Nanoribbons for Semiâ€heterogeneous and Enantioselective Organocatalysis of Aldol Reactions in Water. ChemCatChem, 2020, 12, 1156-1160.	1.8	12
13	Tailorâ€Made Polydiacetylene Micelles for the Catalysis of 1,3â€Dipolar Cycloadditions in Water. Advanced Synthesis and Catalysis, 2020, 362, 4425-4431.	2.1	16
14	Copper complexes and carbon nanotube–copper ferrite-catalyzed benzenoid A-ring selenation of quinones: an efficient method for the synthesis of trypanocidal agents. New Journal of Chemistry, 2019, 43, 13751-13763.	1.4	27
15	Direct aerobic oxidation of alcohols into esters catalyzed by carbon nanotube–gold nanohybrids. Nanoscale Advances, 2019, 1, 1181-1185.	2.2	19
16	Catalytic Dehydrosulfurization of Thioamides to Nitriles by Gold Nanoparticles Supported on Carbon Nanotubes. ChemCatChem, 2019, 11, 5758-5761.	1.8	13
17	Triphenylbismuth Dichlorideâ€Mediated Conversion of Thioamides to Nitriles. European Journal of Organic Chemistry, 2019, 2019, 4043-4045.	1.2	5
18	Tumor targeted micellar nanocarriers assembled from epipodophyllotoxin-based amphiphiles. Nanoscale, 2019, 11, 9756-9759.	2.8	14

EDMOND GRAVEL

#	Article	IF	CITATIONS
19	Carbon nanotube–ruthenium hybrid towards mild oxidation of sulfides to sulfones: efficient synthesis of diverse sulfonyl compounds. Catalysis Science and Technology, 2019, 9, 2742-2748.	2.1	13
20	Aptamer-decorated polydiacetylene micelles with improved targeting of cancer cells. International Journal of Pharmaceutics, 2019, 565, 59-63.	2.6	25
21	Controlled Release of a Micelle Payload via Sequential Enzymatic and Bioorthogonal Reactions in Living Systems. Angewandte Chemie - International Edition, 2019, 58, 6366-6370.	7.2	45
22	Polyamine transport system-targeted nanometric micelles assembled from epipodophyllotoxin-amphiphiles. Chemical Communications, 2019, 55, 14968-14971.	2.2	9
23	Tuning the cationic interface of simple polydiacetylene micelles to improve siRNA delivery at the cellular level. Nanoscale Advances, 2019, 1, 4331-4338.	2.2	8
24	Recognition protein C1q of innate immunity agglutinates nanodiamonds without activating complement. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 292-302.	1.7	4
25	Biotin-functionalized targeted polydiacetylene micelles. Chemical Communications, 2018, 54, 3613-3616.	2.2	30
26	Carbon nanotube–copper ferrite-catalyzed aqueous 1,3-dipolar cycloaddition of <i>in situ</i> -generated organic azides with alkynes. Chemical Communications, 2018, 54, 3644-3647.	2.2	27
27	Mode of PEG Coverage on Carbon Nanotubes Affects Binding of Innate Immune Protein C1q. Journal of Physical Chemistry B, 2018, 122, 757-763.	1.2	7
28	Impact of the surface charge of polydiacetylene micelles on their interaction with human innate immune protein C1q and the complement system. International Journal of Pharmaceutics, 2018, 536, 434-439.	2.6	14
29	Where do nanometric micelles stand for biomedical applications?. Future Medicinal Chemistry, 2018, 10, 1137-1139.	1.1	7
30	Combination of Aryl Diselenides/Hydrogen Peroxide and Carbonâ€Nanotube/Rhodium Nanohybrids for Naphthol Oxidation: An Efficient Route towards Trypanocidal Quinones. Chemistry - A European Journal, 2018, 24, 15227-15235.	1.7	21
31	Aqueous 1,3-dipolar cycloadditions promoted by copper nanoparticles in polydiacetylene micelles. Green Chemistry, 2017, 19, 3112-3115.	4.6	37
32	Human Immune Protein C1q Selectively Disaggregates Carbon Nanotubes. Nano Letters, 2017, 17, 3409-3415.	4.5	14
33	Enantioselective synthesis of a cyclobutane analogue of Milnacipran. Organic Chemistry Frontiers, 2017, 4, 1276-1280.	2.3	1
34	Direct and Co atalytic Oxidation of Hydroxylamines to Nitrones Promoted by Rhodium Nanoparticles Supported on Carbon Nanotubes. ChemCatChem, 2017, 9, 2091-2094.	1.8	11
35	Selective Conversion of Nitroarenes to Nâ€Aryl Hydroxylamines Catalysed by Carbonâ€Nanotube‣upported Nickel(II) Hydroxide. ChemistrySelect, 2017, 2, 5891-5894.	0.7	15
36	Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes: Application to the Catalytic Oxidation of Hydroxylamines. Nanomaterials, 2016, 6, 37.	1.9	9

EDMOND GRAVEL

#	Article	IF	CITATIONS
37	CO ₂ Reduction to CO in Water: Carbon Nanotube–Gold Nanohybrid as a Selective and Efficient Electrocatalyst. ChemSusChem, 2016, 9, 2317-2320.	3.6	45
38	Recent developments in Tsuji-Wacker oxidation. Tetrahedron Letters, 2016, 57, 3993-4000.	0.7	60
39	Triphenylbismuth carbonate-mediated oxidation of hydroxylamines to nitrones and in situ 1,3-dipolar cycloaddition. RSC Advances, 2016, 6, 89238-89241.	1.7	6
40	Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chemical Communications, 2016, 52, 11783-11786.	2.2	28
41	Direct and co-catalytic oxidative aromatization of 1,4-dihydropyridines and related substrates using gold nanoparticles supported on carbon nanotubes. Catalysis Science and Technology, 2016, 6, 6476-6479.	2.1	16
42	Carbon Nanotube–Ruthenium Hybrids for the Partial Reduction of 2â€Nitrochalcones: Easy Access to Quinoline <i>N</i> â€Oxides. ChemCatChem, 2016, 8, 1298-1302.	1.8	20
43	Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes and Catalysis of Selected Organic Transformations. Synlett, 2016, 27, 1179-1186.	1.0	20
44	Cooperative Dehydrogenation of Nâ€Heterocycles Using a Carbon Nanotube–Rhodium Nanohybrid. Chemistry - A European Journal, 2015, 21, 7039-7042.	1.7	89
45	Polymerâ€Decorated Carbon Nanotubes as Transducers for Labelâ€Free Photonic Biosensors. Chemistry - A European Journal, 2015, 21, 18649-18653.	1.7	5
46	Polydiacetylene Nanotubes in Heterogeneous Catalysis: Application to the Goldâ€Mediated Oxidation of Silanes. Macromolecular Chemistry and Physics, 2015, 216, 2398-2403.	1.1	15
47	Tsuji–Wacker Oxidation of Terminal Olefins using a Palladium–Carbon Nanotube Nanohybrid. ChemCatChem, 2015, 7, 2318-2322.	1.8	35
48	A doubly responsive probe for the detection of Cys4-tagged proteins. Chemical Communications, 2015, 51, 11482-11484.	2.2	32
49	Deoxygenation of amine N-oxides using gold nanoparticles supported on carbon nanotubes. RSC Advances, 2015, 5, 50865-50868.	1.7	29
50	Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst. Catalysis Science and Technology, 2015, 5, 2388-2392.	2.1	62
51	Mild and selective catalytic oxidation of organic substrates by a carbon nanotube-rhodium nanohybrid. Catalysis Science and Technology, 2015, 5, 4542-4546.	2.1	29
52	Manipulating Simple Reactive Chemical Units: Fishing for Alkaloids from Complex Mixtures. Chemistry - A European Journal, 2015, 21, 10604-10615.	1.7	15
53	Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 17274-17277.	2.8	22
54	A straightforward enantioselective synthesis of F17807. Tetrahedron, 2015, 71, 9383-9387.	1.0	4

EDMOND GRAVEL

#	Article	IF	CITATIONS
55	Stable and compact zwitterionic polydiacetylene micelles with tumor-targeting properties. Chemical Communications, 2015, 51, 14937-14940.	2.2	38
56	Selective conversion of nitroarenes using a carbon nanotube–ruthenium nanohybrid. Chemical Communications, 2015, 51, 1739-1742.	2.2	61
57	Synthesis of Quinoxalines by a Carbon Nanotube–Gold Nanohybrid atalyzed Cascade Reaction of Vicinal Diols and Keto Alcohols with Diamines. ChemCatChem, 2015, 7, 57-61.	1.8	32
58	Carbon Nanotube–Gold Nanohybrid Catalyzed Nâ€Formylation of Amines by using Aqueous Formaldehyde. ChemCatChem, 2014, 6, 2201-2205.	1.8	48
59	Nanometric Micelles with Photoâ€Triggered Cytotoxicity. Advanced Functional Materials, 2014, 24, 5246-5252.	7.8	33
60	Aerobic Oxidation of Phenols and Related Compounds using Carbon Nanotube–Gold Nanohybrid Catalysts. ChemCatChem, 2014, 6, 719-723.	1.8	43
61	Co-catalytic oxidative coupling of primary amines to imines using an organic nanotube–gold nanohybrid. Chemical Communications, 2014, 50, 15251-15254.	2.2	47
62	Size effect of gold nanoparticles supported on carbon nanotube as catalysts in selected organic reactions. Tetrahedron, 2014, 70, 6140-6145.	1.0	39
63	Carbon nanotube–gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale, 2013, 5, 6491.	2.8	68
64	On the Characterization of the Surface Chemistry of Quantum Dots. Nano Letters, 2013, 13, 5075-5078.	4.5	37
65	Semisynthesis of Macrocarpal C and Analogues by Selective Dehydration of Macrocarpal A or B. Journal of Natural Products, 2013, 76, 2346-2349.	1.5	15
66	Direct Reductive Amination of Aldehydes Catalyzed by Carbon Nanotube/Gold Nanohybrids. ChemCatChem, 2013, 5, 3571-3575.	1.8	40
67	Compact tridentate ligands for enhanced aqueous stability of quantum dots and in vivo imaging. Chemical Science, 2013, 4, 411-417.	3.7	32
68	Cellular uptake and trafficking of polydiacetylene micelles. Nanoscale, 2013, 5, 1955.	2.8	32
69	Spontaneous Formation of Nitrarine and Polycyclic Skeletons Related to <i>Nitraria</i> Indolic Alkaloids under Nonâ€Enzymic Conditions. Chemistry - A European Journal, 2013, 19, 14515-14520.	1.7	6
70	Rearrangement of 2-Bromo-1-(bromomethyl)ethyl Esters Under Basic Conditions: Scope and Mechanism. Synthesis, 2013, 45, 2861-2866.	1.2	3
71	"Clickable―Hydrosoluble PEGylated Cryptophane as a Universal Platform for ¹²⁹ Xe Magnetic Resonance Imaging Biosensors. Chemistry - A European Journal, 2013, 19, 6089-6093.	1.7	19
72	Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnology Reviews, 2012, 1, 515-539.	2.6	49

Edmond Gravel

#	Article	IF	CITATIONS
73	Synthesis and reactivity of pelletierine-derived building blocks and pelletierine analogs. Tetrahedron, 2012, 68, 6276-6283.	1.0	21
74	Enantioselective synthesis of levomilnacipran. Chemical Communications, 2012, 48, 8111.	2.2	34
75	Drug Delivery and Imaging with Polydiacetylene Micelles. Chemistry - A European Journal, 2012, 18, 400-408.	1.7	80
76	In Situ Electron-Beam Polymerization Stabilized Quantum Dot Micelles. Langmuir, 2011, 27, 4358-4361.	1.6	8
77	Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale, 2011, 3, 893-896.	2.8	162
78	Questions about the structures of nitraraine and nitraraidine. Tetrahedron Letters, 2011, 52, 6453-6456.	0.7	7
79	Tumorâ€Targeted Polydiacetylene Micelles for In Vivo Imaging and Drug Delivery. Small, 2011, 7, 2786-2792.	5.2	68
80	Catalytic Oxidation of Silanes by Carbon Nanotube–Gold Nanohybrids. Angewandte Chemie - International Edition, 2011, 50, 7533-7536.	7.2	169
81	Particular behavior of â€~C6C2 units' in the Chichibabin pyridine synthesis and biosynthetic implications. Tetrahedron Letters, 2011, 52, 3523-3526.	0.7	16
82	Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids. Science China Chemistry, 2010, 53, 2015-2018.	4.2	12
83	Biomimetically relevant self-condensations of C5 units derived from lysine. Organic and Biomolecular Chemistry, 2010, 8, 2522.	1.5	10
84	Biosynthesis and biomimetic synthesis of alkaloids isolated from plants of the Nitraria and Myrioneuron genera: an unusual lysine-based metabolism. Natural Product Reports, 2010, 27, 32-56.	5.2	98
85	Biomimetic Synthesis of Tangutorine Following New Biogenetic Proposals. Organic Letters, 2009, 11, 1891-1894.	2.4	28
86	Biogenesis and Biomimetic Chemistry: Can Complex Natural Products Be Assembled Spontaneously?. European Journal of Organic Chemistry, 2008, 2008, 27-42.	1.2	66
87	Biomimetic investigations from reactive lysine-derived C5 units: one step synthesis of complex polycyclic alkaloids from the Nitraria genus. Tetrahedron, 2006, 62, 5248-5253.	1.0	28
88	Fluorescence detection combined with either HPLC or HPTLC for pharmaceutical quality control in a hospital chemotherapy production unit: Application to camptothecin derivatives. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39, 581-586.	1.4	30
89	Biomimetic One-Step Access to Nitraramine from Simple C5Units. Revision of the Previously Reported Structure of Epinitraramine to Nitraramine. Organic Letters, 2005, 7, 2497-2499.	2.4	30