Alexander Boker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5153217/publications.pdf

Version: 2024-02-01

179 papers 9,853 citations

46984 47 h-index 95 g-index

184 all docs

184 docs citations

times ranked

184

9895 citing authors

#	Article	IF	Citations
1	Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature, 2005, 434, 55-59.	13.7	912
2	Self-assembly of nanoparticles at interfaces. Soft Matter, 2007, 3, 1231.	1.2	512
3	Amphiphilic Cylindrical Coreâ^'Shell Brushes via a "Grafting From―Process Using ATRP. Macromolecules, 2001, 34, 6883-6888.	2.2	439
4	Janus Micellesâ€. Macromolecules, 2001, 34, 1069-1075.	2.2	391
5	Janus Particles at Liquidâ^'Liquid Interfaces. Langmuir, 2006, 22, 5227-5229.	1.6	371
6	Amphiphilic Janus Micelles with Polystyrene and Poly(methacrylic acid) Hemispheres. Journal of the American Chemical Society, 2003, 125, 3260-3267.	6.6	348
7	Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004, 3, 302-306.	13.3	343
8	Ferritin: A Versatile Building Block for Bionanotechnology. Chemical Reviews, 2015, 115, 1653-1701.	23.0	330
9	Ultrathin Cross-Linked Nanoparticle Membranes. Journal of the American Chemical Society, 2003, 125, 12690-12691.	6.6	267
10	Nanoparticle Assembly at Fluid Interfaces:Â Structure and Dynamics. Langmuir, 2005, 21, 191-194.	1.6	241
11	Self-Assembly and Cross-Linking of Bionanoparticles at Liquid-Liquid Interfaces. Angewandte Chemie - International Edition, 2005, 44, 2420-2426.	7.2	238
12	Self-assembly of functional nanostructures from ABC triblock copolymers. Nature Materials, 2003, 2, 744-747.	13.3	216
13	On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces. Physical Chemistry Chemical Physics, 2007, 9, 6351.	1.3	153
14	Large Scale Domain Alignment of a Block Copolymer from Solution Using Electric Fields. Macromolecules, 2002, 35, 1319-1325.	2.2	142
15	Microscopic Mechanisms of Electric-Field-Induced Alignment of Block Copolymer Microdomains. Physical Review Letters, 2002, 89, 135502.	2.9	129
16	Crosslinked Capsules of Quantum Dots by Interfacial Assembly and Ligand Crosslinking. Advanced Materials, 2005, 17, 2082-2086.	11,1	126
17	Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polymer Chemistry, 2015, 6, 5143-5184.	1.9	124
18	Surface-Grafted Hyperbranched Polymers via Self-Condensing Atom Transfer Radical Polymerization from Silicon Surfaces. Macromolecules, 2001, 34, 6871-6882.	2.2	123

#	Article	IF	CITATIONS
19	Self-Assembly of Janus Nanoparticles in Diblock Copolymers. ACS Nano, 2010, 4, 913-920.	7.3	123
20	Electric Field Alignment of a Block Copolymer Nanopattern: Direct Observation of the Microscopic Mechanism. ACS Nano, 2009, 3, 1091-1096.	7.3	110
21	Electric Field Induced Alignment of Concentrated Block Copolymer Solutions. Macromolecules, 2003, 36, 8078-8087.	2.2	108
22	Enzyme–Polymer Conjugates as Robust Pickering Interfacial Biocatalysts for Efficient Biotransformations and Oneâ€Pot Cascade Reactions. Angewandte Chemie - International Edition, 2018, 57, 13810-13814.	7.2	106
23	Self-Assembly of Tobacco Mosaic Virus at Oil/Water Interfaces. Langmuir, 2009, 25, 4979-4987.	1.6	100
24	A Lithography-Free Pathway for Chemical Microstructuring of Macromolecules from Aqueous Solution Based on Wrinkling. Langmuir, 2008, 24, 12748-12753.	1.6	98
25	Challenges and advances in the field of self-assembled membranes. Chemical Society Reviews, 2013, 42, 6578.	18.7	96
26	Phase behavior of linear polystyrene-block-poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) triblock terpolymers. Polymer, 2003, 44, 6815-6823.	1.8	89
27	Micellar Aggregates of Amylose-block-polystyrene Rodâ^'Coil Block Copolymers in Water and THF. Macromolecules, 2005, 38, 873-879.	2.2	88
28	Reversible tuning of a block-copolymer nanostructure via electric fields. Nature Materials, 2008, 7, 142-145.	13.3	75
29	Hybrid Capsules via Selfâ€Assembly of Thermoresponsive and Interfacially Active Bionanoparticle–Polymer Conjugates. Advanced Functional Materials, 2011, 21, 2470-2476.	7.8	72
30	Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. Soft Matter, 2006, 2, 1089-1094.	1.2	71
31	Influence of Initial Order on the Microscopic Mechanism of Electric Field Induced Alignment of Block Copolymer Microdomains. Langmuir, 2005, 21, 11974-11980.	1.6	69
32	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69
33	Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles. Langmuir, 2009, 25, 5168-5176.	1.6	65
34	Nanoscopic Surface Patterns from Functional ABC Triblock Copolymers. Macromolecules, 2001, 34, 7477-7488.	2.2	64
35	Beyond Orientation: The Impact of Electric Fields on Block Copolymers. Macromolecular Chemistry and Physics, 2012, 213, 259-269.	1.1	64
36	Synthesis and Properties of ABA and ABC Triblock Copolymers with Glassy (A), Elastomeric (B), and Crystalline (C) Blocks. Macromolecules, 2001, 34, 8720-8729.	2.2	62

3

#	Article	IF	CITATIONS
37	Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. Polymer, 2011, 52, 211-232.	1.8	61
38	Microgel Size Modulation by Electrochemical Switching. Chemistry of Materials, 2015, 27, 7306-7312.	3.2	61
39	Fluorescence Correlation Spectroscopy of Single Dye-Labeled Polymers in Organic Solvents. Macromolecules, 2004, 37, 1917-1920.	2.2	60
40	Local Recurrence After Primary Proton Beam Therapy in Uveal Melanoma: Risk Factors, Retreatment Approaches, and Outcome. American Journal of Ophthalmology, 2015, 160, 628-636.	1.7	55
41	Anchor peptides: A green and versatile method for polypropylene functionalization. Polymer, 2017, 116, 124-132.	1.8	55
42	Block copolymers in electric fields. Progress in Polymer Science, 2017, 64, 182-214.	11.8	54
43	Block Copolymer Nanocontainers. ACS Nano, 2010, 4, 2845-2855.	7.3	52
44	Self-Assembly of Nanoparticle–Copolymer Mixtures: A Kinetic Point of View. Advanced Materials, 2007, 19, 381-385.	11.1	51
45	Pickering emulsion templated soft capsules by self-assembling cross-linkable ferritin–polymer conjugates. Chemical Communications, 2011, 47, 8376.	2.2	51
46	Selectively Thermally Cleavable Fluorinated Side Chain Block Copolymers:Â Surface Chemistry and Surface Properties. Macromolecules, 2000, 33, 1310-1320.	2.2	47
47	The influence of incompatibility and dielectric contrast on the electric field-induced orientation of lamellar block copolymers. Polymer, 2006, 47, 849-857.	1.8	47
48	3-dimensional control over lamella orientation and order in thick block copolymer films. Soft Matter, 2009, 5, 812-819.	1.2	47
49	A Fluorescent Hydrogel-Based Flow Cytometry High-Throughput Screening Platform for Hydrolytic Enzymes. Chemistry and Biology, 2014, 21, 1733-1742.	6.2	45
50	Separating membrane and surface tension contributions in Pickering droplet deformation. Soft Matter, 2008, 4, 2259.	1.2	44
51	Electric Field Induced Gyroid-to-Cylinder Transitions in Concentrated Diblock Copolymer Solutions. Macromolecules, 2010, 43, 4268-4274.	2.2	42
52	Bio-inorganic microcapsules from templating protein- and bionanoparticle-stabilized Pickering emulsions. Journal of Materials Chemistry, 2010, 20, 4299.	6.7	42
53	Glycopolymer Brushes for Specific Lectin Binding by Controlled Multivalent Presentation of $<$ i>N $<$ i-Acetyllactosamine Glycan Oligomers. Macromolecular Rapid Communications, 2015, 36, 45-54.	2.0	42
54	Scaling behavior of the reorientation kinetics of block copolymers exposed to electric fields. Soft Matter, 2007, 3, 448-453.	1.2	41

#	Article	IF	Citations
55	Selfâ€Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. Macromolecular Chemistry and Physics, 2019, 220, 1900196.	1.1	41
56	Protein–mineral hybrid capsules from emulsions stabilized with an amphiphilic protein. Journal of Materials Chemistry, 2011, 21, 9731.	6.7	40
57	Self-Assembly Process of Soft Ferritin-PNIPAAm Conjugate Bionanoparticles at Polar–Apolar Interfaces. Langmuir, 2013, 29, 276-284.	1.6	40
58	Nanostructured wrinkled surfaces for templating bionanoparticlesâ€"controlling and quantifying the degree of order. Faraday Discussions, 2009, 143, 143.	1.6	39
59	Ordering and Printing Virus Arrays: A Straightforward Way to Functionalize Surfaces. Small, 2010, 6, 2122-2125.	5. 2	39
60	Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes. Polymers, 2017, 9, 91.	2.0	39
61	Broadening the scope of sortagging. RSC Advances, 2019, 9, 4700-4721.	1.7	39
62	Bionanoparticles and hybrid materials: tailored structural properties, self-assembly, materials and developments in the field. Journal of Materials Chemistry, 2011, 21, 16735.	6.7	38
63	Electric Field Induced Selective Disordering in Lamellar Block Copolymers. ACS Nano, 2013, 7, 3854-3867.	7.3	38
64	Selective Packaging of Ferricyanide within Thermoresponsive Microgels. Journal of Physical Chemistry C, 2014, 118, 26199-26211.	1.5	38
65	Guided self-assembly of microgels: from particle arrays to anisotropic nanostructures. Soft Matter, 2011, 7, 8231.	1.2	36
66	Synthetic inorganic materials by mimicking biomineralization processes using native and non-native protein functions. Journal of Materials Chemistry, 2011, 21, 18903.	6.7	35
67	Combining Graphoepitaxy and Electric Fields toward Uniaxial Alignment of Solvent-Annealed Polystyrene– <i>b</i> –Poly(dimethylsiloxane) Block Copolymers. Chemistry of Materials, 2015, 27, 6890-6898.	3.2	35
68	Synthesis of Hybrid Silica Nanoparticles Densely Grafted with Thermo and pH Dual-Responsive Brushes via Surface-Initiated ATRP. Macromolecules, 2016, 49, 9586-9596.	2.2	35
69	Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment. ACS Macro Letters, 2013, 2, 53-58.	2.3	34
70	Ultraâ€Thin Selfâ€Assembled Proteinâ€Polymer Membranes: A New Pore Forming Strategy. Advanced Functional Materials, 2014, 24, 6762-6770.	7.8	34
71	Influence of Counterion Valency on the Conformational Behavior of Cylindrical Polyelectrolyte Brushes. Journal of Physical Chemistry B, 2009, 113, 5104-5110.	1.2	33
72	Antiangiogenic or Corticosteroid Treatment in Patients With Radiation Maculopathy After Proton Beam Therapy for Uveal Melanoma. American Journal of Ophthalmology, 2016, 168, 31-39.	1.7	33

#	Article	IF	Citations
73	Enzyme–Polymer Conjugates as Robust Pickering Interfacial Biocatalysts for Efficient Biotransformations and Oneâ€Pot Cascade Reactions. Angewandte Chemie, 2018, 130, 14006-14010.	1.6	33
74	Wetting Phenomena on (Gradient) Wrinkle Substrates. Langmuir, 2016, 32, 8882-8888.	1.6	31
75	Micelles from self-assembled double-hydrophilic PHEMA-glycopolymer-diblock copolymers as multivalent scaffolds for lectin binding. Polymer Chemistry, 2016, 7, 878-886.	1.9	30
76	Self-Assembly and Cross-Linking of Bionanoparticles at Liquid-Liquid Interfaces. Angewandte Chemie, 2005, 117, 2472-2478.	1.6	29
77	Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces. Advances in Polymer Science, 2009, , 75-99.	0.4	29
78	Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Macromolecular Rapid Communications, 2015, 36, 1472-1478.	2.0	29
79	Control of Orientational Order in Block Copolymer Thin Films by Electric Fields: A Combinatorial Approach. Macromolecules, 2008, 41, 5515-5518.	2.2	28
80	A one-step screening process for optimal alignment of (soft) colloidal particles. Nanoscale, 2012, 4, 7338.	2.8	28
81	Copolymer microgels by precipitation polymerisation of N-vinylcaprolactam and N-isopropylacrylamides in aqueous medium. Colloid and Polymer Science, 2013, 291, 21-31.	1.0	28
82	Shifting the Orderâ^Disorder Transition Temperature of Block Copolymer Systems with Electric Fields. Macromolecules, 2009, 42, 3433-3436.	2.2	27
83	Controlling the Fast ATRP of N-Isopropylacrylamide in Water. ACS Symposium Series, 2009, , 127-137.	0.5	27
84	Lamellar microstructure and dynamic behavior of diblock copolymer/nanoparticle composites under electric fields. Soft Matter, 2010, 6, 5956.	1.2	27
85	Electricâ€Fieldâ€Induced Alignment of Block Copolymer/Nanoparticle Blends. Small, 2013, 9, 3276-3281.	5.2	27
86	Crossâ€Linking Density and Temperature Effects on the Selfâ€Assembly of SiO ₂ â€"PNIPAAm Coreâ€"Shell Particles at Interfaces. Chemistry - A European Journal, 2013, 19, 5586-5594.	1.7	27
87	Grafting PNIPAAm from β-barrel shaped transmembrane nanopores. Biomaterials, 2016, 107, 115-123.	5.7	27
88	Enhancing Ordering Dynamics in Solvent-Annealed Block Copolymer Films by Lithographic Hard Mask Supports. Macromolecules, 2014, 47, 3059-3067.	2.2	24
89	Responsive Macroscopic Materials From Selfâ€Assembled Crossâ€Linked SiO ₂ â€PNIPAAm Core/Shell Structures. Advanced Functional Materials, 2012, 22, 1724-1731.	7.8	23
90	Electric-Field-Induced Order–Order Transition from Hexagonally Perforated Lamellae to Lamellae. Macromolecules, 2015, 48, 6206-6213.	2.2	23

#	Article	IF	CITATIONS
91	Mechanical Properties of Aligned Nanotopologies for Directing Cellular Behavior. Advanced Materials Interfaces, 2016, 3, 1600275.	1.9	23
92	Morphology-Controlled Kinetics of Solvent Uptake by Block Copolymer Films in Nonselective Solvent Vapors. ACS Macro Letters, 2014, 3, 803-807.	2.3	22
93	Nano-thin walled micro-compartments from transmembrane protein–polymer conjugates. Soft Matter, 2017, 13, 2866-2875.	1.2	21
94	Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance. Analytical and Bioanalytical Chemistry, 2016, 408, 5633-5640.	1.9	20
95	Hierarchical structures via self-assembling protein-polymer hybrid building blocks. Polymer, 2012, 53, 6045-6052.	1.8	19
96	Hierarchical Manipulation of Block Copolymer Patterns on 3D Topographic Substrates: Beyond Graphoepitaxy. Advanced Materials, 2016, 28, 6900-6905.	11.1	19
97	Temperature-Controlled Solvent Vapor Annealing of Thin Block Copolymer Films. Polymers, 2019, 11, 1312.	2.0	19
98	A Dual pH―and Lightâ€Responsive Spiropyranâ€Based Surfactant: Investigations on Its Switching Behavior and Remote Control over Emulsion Stability. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
99	On the alignment of a cylindrical block copolymer: a time-resolved and 3-dimensional SFM study. Soft Matter, 2012, 8, 995-1002.	1.2	18
100	Orientation-Dependent Order–Disorder Transition of Block Copolymer Lamellae in Electric Fields. ACS Macro Letters, 2013, 2, 469-473.	2.3	18
101	Immobilization of 2-Deoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir–Schaefer Technique. ACS Applied Materials & Description of 2-Deoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir–Schaefer Technique. ACS Applied Materials & Description of 2-Deoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir–Schaefer Technique. ACS Applied Materials & Decoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir–Schaefer Technique. ACS Applied Materials & Decoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir–Schaefer Technique. ACS Applied Materials & Decoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir—Schaefer Technique. ACS Applied Materials & Decoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir—Schaefer Technique. ACS Applied Materials & Decoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir—Schaefer Technique. ACS Applied Materials & Decoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuirâe Aldolase in Polymeric Thin Films via the La	4.0	18
102	Cataract development in patients treated with proton beam therapy for uveal melanoma. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1625-1630.	1.0	17
103	Measuring rotational diffusion of colloidal spheres with confocal microscopy. Soft Matter, 2016, 12, 6033-6037.	1.2	17
104	Various Aspects of the Interfacial Self-Assembly of Nanoparticles. Advances in Polymer Science, 2010, , 39-58.	0.4	16
105	Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces. Journal of Colloid and Interface Science, 2016, 479, 199-206.	5.0	16
106	A Biocatalytically Active Membrane Obtained from Immobilization of 2-Deoxy- <scp>d</scp> -ribose-5-phosphate Aldolase on a Porous Support. ACS Applied Materials & Interfaces, 2019, 11, 34441-34453.	4.0	16
107	Selective Alteration of Polymer Surfaces by Thermal Cleavage of Fluorinated Side Chains. Macromolecules, 2002, 35, 4929-4937.	2.2	15
108	Going beyond the Surface: Revealing Complex Block Copolymer Morphologies with 3D Scanning Force Microscopy. ACS Nano, 2010, 4, 5609-5616.	7.3	15

#	Article	IF	Citations
109	Guiding Block Copolymers into Sequenced Patterns via Inverted Terrace Formation. Macromolecules, 2012, 45, 2494-2501.	2.2	15
110	Fabrication of Thermoresponsive Plasmonic Core–Satellite Nanoassemblies with a Tunable Stoichiometry via Surfaceâ€Initiated Reversible Addition–Fragmentation Chain Transfer Polymerization from Silica Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1700092.	1.9	15
111	Synthesis of Polystyrene and Poly(4â€vinylpyridine) Mixed Grafted Silica Nanoparticles via a Combination of ATRP and Cu ^I â€Catalyzed Azideâ€Alkyne Click Chemistry. Macromolecular Rapid Communications, 2017, 38, 1600475.	2.0	15
112	Largeâ€Scale Oriented Assembly of Nanoparticles in Diblock Copolymer Templates under Electric Fields. Macromolecular Chemistry and Physics, 2009, 210, 1003-1010.	1.1	14
113	<i>In situ</i> Electrochemical Impedance Spectroscopy of Electrostatically Driven Selective Gold Nanoparticle Adsorption on Block Copolymer Lamellae. ACS Applied Materials & Driven Selective Gold, 8, 27282-27290.	4.0	14
114	Surfaceâ€Grafted Nanogel Arrays Direct Cell Adhesion and Motility. Advanced Materials Interfaces, 2016, 3, 1600455.	1.9	14
115	Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays. Macromolecular Rapid Communications, 2016, 37, 1446-1452.	2.0	14
116	Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy- <scp>d</scp> -ribose-5-phosphate Aldolase–Poly(<i>N</i> -isopropylacrylamide) Conjugates. Bioconjugate Chemistry, 2018, 29, 104-116.	1.8	14
117	Ceramic nanowrinkles via a facile replication process. Journal of Materials Chemistry, 2011, 21, 11734.	6.7	13
118	Piezoelectric Properties of Nonâ€Polar Block Copolymers. Advanced Materials, 2011, 23, 4047-4052.	11.1	13
119	Radiation-Induced Optic Neuropathy: Observation versus Intravitreal Treatment: Can Visual Acuity Be Maintained by Intravitreal Treatment?. American Journal of Ophthalmology, 2019, 208, 289-294.	1.7	13
120	In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29276-29289.	4.0	13
121	Mono-patchy zwitterionic microcolloids as building blocks for pH-controlled self-assembly. Soft Matter, 2019, 15, 2430-2438.	1.2	13
122	Effects of Electric Fields on Block Copolymer Nanostructures. Advances in Polymer Science, 2010, , 1-31.	0.4	12
123	Exploring the mineralization of hydrophobins at a liquid interface. Soft Matter, 2012, 8, 11343.	1.2	12
124	Biocatalytically active microgels by precipitation polymerization of <i>N</i> -isopropyl acrylamide in the presence of an enzyme. RSC Advances, 2019, 9, 28377-28386.	1.7	12
125	Stabilization of 3D Network Morphologies in Thin Films via Chemical Modification of ABC Triblock Terpolymers. Macromolecules, 2010, 43, 10213-10215.	2.2	11
126	Lysozyme–silica hybrid materials: from nanoparticles to capsules and double emulsion mineral capsules. Chemical Communications, 2012, 48, 10210.	2.2	11

#	Article	IF	CITATIONS
127	Birefringence Analysis of the Effect of Electric Fields on the Order–Disorder Transition Temperature of Lamellae Forming Block Copolymers. Macromolecules, 2015, 48, 3354-3359.	2.2	11
128	Synthesis of thermo-responsive nanocomposites of superparamagnetic cobalt nanoparticles/poly(N-isopropylacrylamide). Journal of Colloid and Interface Science, 2018, 526, 124-134.	5.0	11
129	Bökeret al.Reply:. Physical Review Letters, 2003, 90, .	2.9	10
130	Ultra-sound assisted formation of biodegradable double emulsion capsules from hen egg white. Soft Matter, 2011, 7, 5274.	1.2	10
131	Trabeculectomy in patients with uveal melanoma after proton beam therapy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1379-1385.	1.0	10
132	From 2D to 3D patches on multifunctional particles: how microcontact printing creates a new dimension of functionality. Soft Matter, 2018, 14, 2301-2309.	1.2	10
133	Generation of 3-dimensional multi-patches on silica particles <i>via</i> printing with wrinkled stamps. Soft Matter, 2018, 14, 3057-3062.	1.2	10
134	Sortase-Mediated Ligation of Purely Artificial Building Blocks. Polymers, 2018, 10, 151.	2.0	10
135	Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectinâ€3. Macromolecular Chemistry and Physics, 2019, 220, 1900293.	1.1	10
136	Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields. Small, 2015, 11, 6058-6064.	5.2	9
137	Proton Beam Irradiation: A Safe Procedure in Postequatorial Extraocular Extension From Uveal Melanoma. American Journal of Ophthalmology, 2018, 191, 49-53.	1.7	9
138	Characteristics of microcontact printing with polyelectrolyte ink for the precise preparation of patches on silica particles. RSC Advances, 2018, 8, 39241-39247.	1.7	9
139	Magnetic Field-Induced Assembly of Superparamagnetic Cobalt Nanoparticles on Substrates and at Liquid–Air Interface. Langmuir, 2018, 34, 13993-14002.	1.6	9
140	Neoadjuvant proton beam irradiation vs. adjuvant ruthenium brachytherapy in transscleral resection of uveal melanoma. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1767-1775.	1.0	9
141	Selfâ€Assembly Behavior of Oppositely Charged Inverse Bipatchy Microcolloids. Small, 2020, 16, e2000442.	5.2	9
142	Construction of Highly Ordered Glycoâ€Inside Nanoâ€Assemblies through RAFT Dispersion Polymerization of Galactoseâ€Decorated Monomer. Angewandte Chemie - International Edition, 2021, 60, 11098-11103.	7.2	9
143	On the incorporation of functionalities into hydroxyapatite capsules. Journal of Materials Chemistry B, 2013, 1, 1190.	2.9	8
144	Shaping Metallic Nanolattices: Design by Microcontact Printing from Wrinkled Stamps. Small, 2020, 16, e1906721.	5.2	8

#	Article	IF	Citations
145	Solid-Phase Microcontact Printing for Precise Patterning of Rough Surfaces: Using Polymer-Tethered Elastomeric Stamps for the Transfer of Reactive Silanes. ACS Applied Polymer Materials, 2021, 3, 2420-2431.	2.0	8
146	Artificial Leaves via Reproduction of Hierarchical Structures by a Fast Molding and Curing Process. Macromolecular Rapid Communications, 2012, 33, 1300-1303.	2.0	7
147	Virusâ€SiO ₂ and Virusâ€SiO ₂ â€Au Hybrid Particles with Tunable Morphology. Particle and Particle Systems Characterization, 2015, 32, 43-47.	1.2	7
148	Controlled Gold Nanorod Reorientation and Hexagonal Order in Micromolded Gold Nanorod@pNIPAM Microgel Chain Arrays. Small, 2017, 13, 1603054.	5.2	7
149	Primary Vitreoretinal Lymphoma Therapy Monitoring: Significant Vitreous Haze Reduction After Intravitreal Rituximab. NeuroSignals, 2021, 29, 1-7.	0.5	7
150	Designing Zwitterionic SiO ₂ NH ₂ â€Au Particles with Tunable Patchiness using Wrinkles. Particle and Particle Systems Characterization, 2014, 31, 871-878.	1.2	6
151	Dual-Stimuli Sensitive Hybrid Materials: Ferritin-PDMAEMA by Grafting-From Polymerization. Macromolecular Chemistry and Physics, 2017, 218, 1600529.	1.1	6
152	Synthesis of Polystyrene-Coated Superparamagnetic and Ferromagnetic Cobalt Nanoparticles. Polymers, 2018, 10, 1053.	2.0	6
153	Diffusive Motion of Linear Microgel Assemblies in Solution. Polymers, 2016, 8, 413.	2.0	5
154	Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field. Soft Matter, 2016, 12, 8417-8424.	1.2	5
155	Twoâ€dimensionally ordered AuNP array formation via microcontact printing on lamellar diblock copolymer films. Polymers for Advanced Technologies, 2017, 28, 623-628.	1.6	5
156	Control of Block Copolymer Microdomain Orientation from Solution using Electric Fields: Governing Parameters and Mechanisms. Nanoscience and Technology, 2007, , 199-229.	1.5	5
157	Controlling the bio-inspired synthesis of silica. Journal of Colloid and Interface Science, 2017, 488, 322-334.	5.0	4
158	Physical Polyurethane Hydrogels via Charge Shielding through Acids or Salts. Macromolecular Rapid Communications, 2018, 39, e1700711.	2.0	4
159	Quantification of Encapsulated Bioburden in Spacecraft Polymer Materials by Cultivation-Dependent and Molecular Methods. PLoS ONE, 2014, 9, e94265.	1.1	4
160	Microstructures: Responsive Macroscopic Materials From Self-Assembled Cross-Linked SiO2-PNIPAAm Core/Shell Structures (Adv. Funct. Mater. 8/2012). Advanced Functional Materials, 2012, 22, 1723-1723.	7.8	3
161	Morphology control and surface functionalization of protein–SiO2 hybrid capsules. Journal of Materials Chemistry B, 2013, 1, 6427.	2.9	3
162	Electric field manipulated nanopatterns in thin films of metalorganic 3-miktoarm star terpolymers. Soft Matter, 2016, 12, 4866-4874.	1.2	3

#	Article	IF	CITATIONS
163	Combined UV–Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 74-81.	2.3	3
164	Tailoring patches on particles: a modified microcontact printing routine using polymer-functionalised stamps. Chemical Communications, 2019, 55, 10104-10107.	2.2	3
165	Protein Nanopore Membranes Prepared by a Simple Langmuir–Schaefer Approach. Small, 2021, 17, e2102975.	5.2	3
166	Synthesis of nanostructured protein–mineral-microcapsules by sonication. Soft Matter, 2022, 18, 2558-2568.	1,2	3
167	Polymers: An Interdisciplinary Open Access Journal. Polymers, 2010, 2, 1-2.	2.0	2
168	Recent Developments in In Situ SFM of Block Copolymers: 3D Volume Structures and Dynamics. Nanoscience and Technology, 2012, , 195-233.	1.5	2
169	About the mechanism of ultrasonically induced protein capsule formation. RSC Advances, 2021, 11, 16152-16157.	1.7	2
170	Single Interdigital Transducer as Surface Acoustic Wave Impedance Sensor. Procedia Technology, 2017, 27, 70-71.	1.1	1
171	The biotechnological production of lacewing silk: From gene to proteinâ€based material. Engineering Reports, 2020, 2, e12137.	0.9	1
172	Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn. Textile Reseach Journal, 2021, 91, 28-39.	1.1	1
173	Construction of Highly Ordered Glycoâ€Inside Nanoâ€Assemblies through RAFT Dispersion Polymerization of Galactoseâ€Decorated Monomer. Angewandte Chemie, 2021, 133, 11198-11203.	1.6	1
174	Ein dualâ€responsives pH―und lichtschaltbares Tensid mit einer Spiropyranâ€Einheit: Untersuchungen zum Schaltmechanismus und Anwendung zur Steuerung von EmulsionsstabilitĀæn. Angewandte Chemie, 0,	1.6	1
175	Open Access Makes an Impact. Polymers, 2013, 5, 954-955.	2.0	0
176	Innentitelbild: Construction of Highly Ordered Glycoâ€Inside Nanoâ€Assemblies through RAFT Dispersion Polymerization of Galactoseâ€Decorated Monomer (Angew. Chem. 20/2021). Angewandte Chemie, 2021, 133, 11098-11098.	1.6	0
177	Orienting and Tuning Block Copolymer Nanostructures with Electric Fields. Series in Sof Condensed Matter, 2009, , 215-244.	0.1	0
178	Biopolymere – FunktionstrÃ g er in der Materialforschung. , 2019, , 133-163.		0
179	Biopolymers – Function Carriers in Materials Research. , 2020, , 129-159.		0