Hirofumi Arakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/515321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p53AIP1, a Potential Mediator of p53-Dependent Apoptosis, and Its Regulation by Ser-46-Phosphorylated p53. Cell, 2000, 102, 849-862.	13.5	1,095
2	A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 2000, 404, 42-49.	13.7	815
3	Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nature Genetics, 2007, 39, 776-780.	9.4	478
4	p53DINP1, a p53-Inducible Gene, Regulates p53-Dependent Apoptosis. Molecular Cell, 2001, 8, 85-94.	4.5	314
5	Elevation of circulating interleukin 6 after surgery: Factors influencing the serum level. Cytokine, 1994, 6, 181-186.	1.4	275
6	Netrin-1 and its receptors in tumorigenesis. Nature Reviews Cancer, 2004, 4, 978-987.	12.8	217
7	Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. Journal of Human Genetics, 2004, 49, 134-140.	1.1	202
8	Mammalian p53R2 Protein Forms an Active Ribonucleotide Reductasein Vitro with the R1 Protein, Which Is Expressed Both in Resting Cells in Response to DNA Damage and in Proliferating Cells. Journal of Biological Chemistry, 2001, 276, 40647-40651.	1.6	161
9	p53RDL1 regulates p53-dependent apoptosis. Nature Cell Biology, 2003, 5, 216-223.	4.6	150
10	Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53. Oncogene, 2002, 21, 2914-2918.	2.6	139
11	Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Nature Genetics, 2003, 34, 440-445.	9.4	131
12	Germ-line and somatic mutations of the APC gene in patients with turcot syndrome and analysis of APC mutations in brain tumors. Genes Chromosomes and Cancer, 1994, 9, 168-172.	1.5	109
13	hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Science, 2003, 94, 431-436.	1.7	108
14	Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene, 2003, 22, 5586-5591.	2.6	106
15	The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. Journal of Human Genetics, 2006, 51, 652-664.	1.1	102
16	p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer Research, 2002, 62, 2883-9.	0.4	94
17	Mieap, a p53-Inducible Protein, Controls Mitochondrial Quality by Repairing or Eliminating Unhealthy Mitochondria. PLoS ONE, 2011, 6, e16060.	1.1	89
18	Possible Role of Semaphorin 3F, a Candidate Tumor Suppressor Gene at 3p21.3, in p53-Regulated Tumor Angiogenesis Suppression. Cancer Research, 2007, 67, 1451-1460.	0.4	81

HIROFUMI ARAKAWA

#	Article	IF	CITATIONS
19	Elevation of serum group II phospholipase A2 levels in patients with advanced cancer. Clinica Chimica Acta, 1994, 228, 91-99.	0.5	69
20	lsolation of a novel gene on 8p21.3–22 whose expression is reduced significantly in human colorectal cancers with liver metastasis. Genes Chromosomes and Cancer, 2000, 29, 9-15.	1.5	63
21	Possible Existence of Lysosome-Like Organella within Mitochondria and Its Role in Mitochondrial Quality Control. PLoS ONE, 2011, 6, e16054.	1.1	63
22	p53, apoptosis and axon-guidance molecules. Cell Death and Differentiation, 2005, 12, 1057-1065.	5.0	60
23	Identification of Semaphorin3B as a Direct Target of p53. Neoplasia, 2002, 4, 82-87.	2.3	53
24	p53RFP, a p53-inducible RING-finger protein, regulates the stability of p21WAF1. Oncogene, 2003, 22, 4449-4458.	2.6	46
25	Dependence receptor UNC5D mediates nerve growth factor depletion–induced neuroblastoma regression. Journal of Clinical Investigation, 2013, 123, 2935-2947.	3.9	43
26	Isolation of a novel gene, CABC1, encoding a mitochondrial protein that is highly homologous to yeast activity of bc1 complex. Cancer Research, 2002, 62, 1246-50.	0.4	43
27	BNIP3 and NIX Mediate Mieap-Induced Accumulation of Lysosomal Proteins within Mitochondria. PLoS ONE, 2012, 7, e30767.	1.1	42
28	Interleukin-8 is constitutively and commonly produced by various human carcinoma cell lines. International Journal of Clinical and Laboratory Research, 1992, 22, 216-219.	1.0	37
29	Cyclin K as a Direct Transcriptional Target of the p53 Tumor Suppressor. Neoplasia, 2002, 4, 268-274.	2.3	37
30	NuMA Is Required for the Selective Induction of p53 Target Genes. Molecular and Cellular Biology, 2013, 33, 2447-2457.	1.1	37
31	Identification of STAG1 as a key mediator of a p53-dependent apoptotic pathway. Oncogene, 2004, 23, 7621-7627.	2.6	36
32	Discovery of Mieapâ€regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer Science, 2017, 108, 809-817.	1.7	31
33	Identification of p53-46F as a super p53 with an enhanced ability to induce p53-dependent apoptosis. Cancer Science, 2006, 97, 633-641.	1.7	28
34	Mieap suppresses murine intestinal tumor via its mitochondrial quality control. Scientific Reports, 2015, 5, 12472.	1.6	27
35	Isolation and characterization of a novel gene, hRFI, preferentially expressed in esophageal cancer. Oncogene, 2002, 21, 5024-5030.	2.6	26
36	Changes in IL-6, IL-8, C-reactive protein and pancreatic secretory trypsin inhibitor after transcatheter arterial chemo-embolization therapy for hepato-cellular carcinoma. Cytokine, 1992, 4, 581-584.	1.4	25

HIROFUMI ARAKAWA

#	Article	IF	CITATIONS
37	Identification of UNC5A as a novel transcriptional target of tumor suppressor p53 and a regulator of apoptosis. International Journal of Oncology, 2010, 36, 1253-60.	1.4	23
38	Mieap-regulated mitochondrial quality control is frequently inactivated in human colorectal cancer. Oncogenesis, 2016, 5, e181-e181.	2.1	23
39	Survivin: A novel marker and potential therapeutic target for human angiosarcoma. Cancer Science, 2017, 108, 2295-2305.	1.7	23
40	Possible role of p53/Mieapâ€regulated mitochondrial quality control as a tumor suppressor in human breast cancer. Cancer Science, 2018, 109, 3910-3920.	1.7	19
41	Infrequent Somatic Mutation of the MTS1 Gene in Primary Bladder Carcinomas. Japanese Journal of Cancer Research, 1995, 86, 249-251.	1.7	18
42	Adenovirus-mediated p53AIP1 gene transfer as a new strategy for treatment of p53-resistant tumors. Cancer Science, 2004, 95, 91-97.	1.7	13
43	Identification of 14-3-3Î ³ as a Mieap-interacting protein and its role in mitochondrial quality control. Scientific Reports, 2012, 2, 379.	1.6	12
44	Bâ€cell linker protein prevents aneuploidy by inhibiting cytokinesis. Cancer Science, 2008, 99, 2444-2454.	1.7	10
45	Identification of NEEP21, encoding neuron-enriched endosomal protein of 21 kDa, as a transcriptional target of tumor suppressor p53. International Journal of Oncology, 2010, 37, 1133-41.	1.4	9
46	p53/Mieap-regulated mitochondrial quality control plays an important role as a tumor suppressor in gastric and esophageal cancers. Biochemical and Biophysical Research Communications, 2020, 529, 582-589.	1.0	9
47	Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53. , 0, .		1
48	, a p53-downstream gene, is associated with suppression of breast cancer cell proliferation and better	1.4	0

survival.. American Journal of Cancer Research, 2021, 11, 6060-6073.