Lars Jelsbak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5152882/publications.pdf Version: 2024-02-01

I ADC FICRAR

#	Article	IF	CITATIONS
1	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
2	Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. Journal of Clinical Microbiology, 2012, 50, 1355-1361.	1.8	1,925
3	Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nature Reviews Microbiology, 2012, 10, 841-851.	13.6	635
4	Complete genome sequence of the myxobacterium Sorangium cellulosum. Nature Biotechnology, 2007, 25, 1281-1289.	9.4	354
5	Evolutionary dynamics of bacteria in a human host environment. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7481-7486.	3.3	327
6	Molecular Epidemiology and Dynamics of Pseudomonas aeruginosa Populations in Lungs of Cystic Fibrosis Patients. Infection and Immunity, 2007, 75, 2214-2224.	1.0	220
7	In Situ Growth Rates and Biofilm Development of <i>Pseudomonas aeruginosa</i> Populations in Chronic Lung Infections. Journal of Bacteriology, 2008, 190, 2767-2776.	1.0	201
8	Genome Analysis of a Transmissible Lineage of Pseudomonas aeruginosa Reveals Pathoadaptive Mutations and Distinct Evolutionary Paths of Hypermutators. PLoS Genetics, 2013, 9, e1003741.	1.5	191
9	Within-Host Evolution of Pseudomonas aeruginosa Reveals Adaptation toward Iron Acquisition from Hemoglobin. MBio, 2014, 5, e00966-14.	1.8	186
10	Evolution and diversification of <i>Pseudomonas aeruginosa</i> in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME Journal, 2012, 6, 31-45.	4.4	184
11	Environmental Heterogeneity Drives Within-Host Diversification and Evolution of Pseudomonas aeruginosa. MBio, 2014, 5, e01592-14.	1.8	153
12	Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2015, 6, 1036.	1.5	144
13	Early adaptive developments of <i>Pseudomonas aeruginosa</i> after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environmental Microbiology, 2010, 12, 1643-1658.	1.8	124
14	Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nature Communications, 2017, 8, 14631.	5.8	116
15	The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nature Communications, 2016, 7, 13002.	5.8	106
16	Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proceedings of the United States of America, 2002, 99, 2032-2037.	3.3	90
17	Evolution of metabolic divergence in <i>Pseudomonas aeruginosa</i> during long-term infection facilitates a proto-cooperative interspecies interaction. ISME Journal, 2016, 10, 1323-1336.	4.4	89
18	Deletion and acquisition of genomic content during early stage adaptation of <i>Pseudomonas aeruginosa</i> to a human host environment. Environmental Microbiology, 2012, 14, 2200-2211.	1.8	88

LARS JELSBAK

#	Article	IF	CITATIONS
19	Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and <i>In Silico</i> Serotyping of Pseudomonas aeruginosa Isolates. Journal of Clinical Microbiology, 2016, 54, 1782-1788.	1.8	85
20	Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7766-7771.	3.3	77
21	Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 2016, 47, 48-55.	1.1	75
22	Staphylococcus aureus Alters Growth Activity, Autolysis, and Antibiotic Tolerance in a Human Host-Adapted Pseudomonas aeruginosa Lineage. Journal of Bacteriology, 2014, 196, 3903-3911.	1.0	68
23	The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5031-5036.	3.3	66
24	Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Molecular Microbiology, 2003, 48, 1-8.	1.2	66
25	Microbial ecology and adaptation in cystic fibrosis airways. Environmental Microbiology, 2011, 13, 1682-1689.	1.8	64
26	\ddot{l}_{f} 54 Enhancer Binding Proteins and Myxococcus xanthus Fruiting Body Development. Journal of Bacteriology, 2004, 186, 4361-4368.	1.0	61
27	Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Current Opinion in Microbiology, 2000, 3, 637-642.	2.3	59
28	Within-Host Adaptation Mediated by Intergenic Evolution in Pseudomonas aeruginosa. Genome Biology and Evolution, 2019, 11, 1385-1397.	1.1	53
29	The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters. MBio, 2015, 6, e01396-15.	1.8	47
30	Enhancer-binding proteins with a forkhead-associated domain and the Â54 regulon in Myxococcus xanthus fruiting body development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3010-3015.	3.3	46
31	Archetypal analysis of diverse Pseudomonas aeruginosatranscriptomes reveals adaptation in cystic fibrosis airways. BMC Bioinformatics, 2013, 14, 279.	1.2	42
32	Evolutionary insight from whole-genome sequencing ofPseudomonas aeruginosafrom cystic fibrosis patients. Future Microbiology, 2015, 10, 599-611.	1.0	42
33	Cell behavior and cell–cell communication during fruiting body morphogenesis in Myxococcus xanthus. Journal of Microbiological Methods, 2003, 55, 829-839.	0.7	41
34	Bacteriocin-mediated competition in cystic fibrosis lung infections. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150972.	1.2	40
35	Substantial molecular evolution and mutation rates in prolonged latent Mycobacterium tuberculosis infection in humans. International Journal of Medical Microbiology, 2016, 306, 580-585.	1.5	38
36	Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Microbial Cell Factories, 2016, 15, 181.	1.9	30

LARS JELSBAK

#	Article	IF	CITATIONS
37	The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations of ciprofloxacin. Microbiology (United Kingdom), 2016, 162, 865-875.	0.7	30
38	Genomic Epidemiology of a Major Mycobacterium tuberculosis Outbreak: Retrospective Cohort Study in a Low-Incidence Setting Using Sparse Time-Series Sampling. Journal of Infectious Diseases, 2017, 216, 366-374.	1.9	29
39	Mutations in 23S rRNA Confer Resistance against Azithromycin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2012, 56, 4519-4521.	1.4	26
40	SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients. Scientific Reports, 2017, 7, 45264.	1.6	26
41	Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data. BMC Microbiology, 2011, 11, 184.	1.3	20
42	Typing of Pseudomonas aeruginosa from hemorrhagic pneumonia in mink (Neovison vison). Veterinary Microbiology, 2013, 163, 103-109.	0.8	20
43	A Major Mycobacterium tuberculosis outbreak caused by one specific genotype in a low-incidence country: Exploring gene profile virulence explanations. Scientific Reports, 2018, 8, 11869.	1.6	14
44	HldE Is Important for Virulence Phenotypes in Enterotoxigenic Escherichia coli. Frontiers in Cellular and Infection Microbiology, 2018, 8, 253.	1.8	12
45	Genome Sequence of Pseudomonas aeruginosa Strain DK1-NH57388A, a Stable Mucoid Cystic Fibrosis Isolate. Genome Announcements, 2016, 4, .	0.8	11
46	Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression. FEMS Microbiology Letters, 2018, 365, .	0.7	11
47	A Whole-Cell Biosensor for Detection of 2,4-Diacetylphloroglucinol (DAPG)-Producing Bacteria from Grassland Soil. Applied and Environmental Microbiology, 2021, 87, .	1.4	11
48	The plasmidome of multidrug-resistant emergent Salmonella serovars isolated from poultry. Infection, Genetics and Evolution, 2021, 89, 104716.	1.0	10
49	Identification and Differentiation of Pseudomonas Species in Field Samples Using an <i>rpoD</i> Amplicon Sequencing Methodology. MSystems, 2021, 6, e0070421.	1.7	10
50	Intergenic evolution during host adaptation increases expression of the metallophore pseudopaline in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2018, 164, 1038-1047.	0.7	10
51	Recurrent tuberculosis in patients infected with the predominant Mycobacterium tuberculosis outbreak strain in Denmark. New insights gained through whole genome sequencing. Infection, Genetics and Evolution, 2020, 80, 104169.	1.0	9
52	A Bacteriophage-Acquired O-Antigen Polymerase (Wzyl̂²) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyl̂±. Frontiers in Microbiology, 2016, 7, 393.	1.5	7
53	A Rare Thioquinolobactin Siderophore Present in a Bioactive Pseudomonas sp. DTU12.1. Genome Biology and Evolution, 2019, 11, 3529-3533.	1.1	6
54	Orally active bivalent VHH construct prevents proliferation of F4+ enterotoxigenic Escherichia coli in weaned piglets. IScience, 2022, 25, 104003.	1.9	6

LARS JELSBAK

#	Article	IF	CITATIONS
55	Draft Genome Sequences of Pseudomonas aeruginosa B3 Strains Isolated from a Cystic Fibrosis Patient Undergoing Antibiotic Chemotherapy. Genome Announcements, 2013, 1, .	0.8	5
56	Application of RNA-seq and Bioimaging Methods to Study Microbe–Microbe Interactions and Their Effects on Biofilm Formation and Gene Expression. Methods in Molecular Biology, 2018, 1734, 131-158.	0.4	5
57	Complete Genome Sequence of Pseudomonas sp. Strain SK, Isolated from Organic Wheat Rhizosphere. Microbiology Resource Announcements, 2020, 9, .	0.3	2
58	Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories. F1000Research, 2016, 5, 421.	0.8	2
59	Complete Genome Sequence of a Bioactive Pseudomonas sp. Strain, DTU12.3, Isolated from Soil in Denmark. Microbiology Resource Announcements, 2019, 8, .	0.3	0