Kuen-Yong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5152705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threeâ€dimensional bioprinting of polysaccharideâ€based selfâ€healing hydrogels with dual crossâ€linking. Journal of Biomedical Materials Research - Part A, 2022, 110, 761-772.	2.1	10
2	In vitro culture of hematopoietic stem cell niche using angiopoietin-1-coupled alginate hydrogel. International Journal of Biological Macromolecules, 2022, 209, 1893-1899.	3.6	6
3	Stretchable and self-healable hyaluronate-based hydrogels for three-dimensional bioprinting. Carbohydrate Polymers, 2022, 295, 119846.	5.1	12
4	On/off switchable physical stimuli regulate the future direction of adherent cellular fate. Journal of Materials Chemistry B, 2021, 9, 5560-5571.	2.9	3
5	3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking. Biomedicines, 2021, 9, 1224.	1.4	15
6	3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112108.	2.5	26
7	In Vitro Cellular Uptake and Transfection of Oligoarginine-Conjugated Glycol Chitosan/siRNA Nanoparticles. Polymers, 2021, 13, 4219.	2.0	4
8	3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Carbohydrate Polymers, 2020, 245, 116496.	5.1	48
9	Regulation of the Viscoelastic Properties of Hyaluronate–Alginate Hybrid Hydrogel as an Injectable for Chondrocyte Delivery. ACS Omega, 2020, 5, 15567-15575.	1.6	21
10	Nose-to-Brain Delivery of Cancer-Targeting Paclitaxel-Loaded Nanoparticles Potentiates Antitumor Effects in Malignant Glioblastoma. Molecular Pharmaceutics, 2020, 17, 1193-1204.	2.3	39
11	Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydrate Polymers, 2019, 223, 115045.	5.1	46
12	Hyaluronate-alginate hybrid hydrogels prepared with various linkers for chondrocyte encapsulation. Carbohydrate Polymers, 2019, 218, 1-7.	5.1	22
13	Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels. Biomacromolecules, 2019, 20, 1860-1866.	2.6	113
14	Carbon Dioxide-Generating PLG Nanoparticles for Controlled Anti-Cancer Drug Delivery. Pharmaceutical Research, 2018, 35, 59.	1.7	16
15	Sequential Targeted Delivery of Liposomes to Ischemic Tissues by Controlling Blood Vessel Permeability. ACS Biomaterials Science and Engineering, 2018, 4, 532-538.	2.6	7
16	Sensitive detection of dengue virus NS1 by highly stable affibody-functionalized gold nanoparticles. New Journal of Chemistry, 2018, 42, 12607-12614.	1.4	7
17	Hyaluronate-alginate hybrid hydrogels modified with biomimetic peptides for controlling the chondrocyte phenotype. Carbohydrate Polymers, 2018, 197, 422-430.	5.1	29
18	Dual peptide-presenting hydrogels for controlling the phenotype of PC12 cells. Colloids and Surfaces B: Biointerfaces, 2017, 152, 36-41.	2.5	13

#	Article	IF	CITATIONS
19	Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydrate Polymers, 2017, 162, 100-107.	5.1	99
20	Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor. Molecular Pharmaceutics, 2017, 14, 1558-1570.	2.3	42
21	Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation. Colloids and Surfaces B: Biointerfaces, 2017, 155, 229-237.	2.5	12
22	Trileucine residues in a ligand-CPP-based siRNA delivery platform improve endosomal escape of siRNA. Journal of Drug Targeting, 2017, 25, 320-329.	2.1	18
23	Injectable hydrogels prepared from partially oxidized hyaluronate and glycol chitosan for chondrocyte encapsulation. Carbohydrate Polymers, 2017, 157, 1281-1287.	5.1	71
24	Interactionâ€ŧailored cell aggregates in alginate hydrogels for enhanced chondrogenic differentiation. Journal of Biomedical Materials Research - Part A, 2017, 105, 42-50.	2.1	9
25	Optical Imaging and Gene Therapy with Neuroblastomaâ€Targeting Polymeric Nanoparticles for Potential Theranostic Applications. Small, 2016, 12, 1201-1211.	5.2	30
26	Theranostics: Optical Imaging and Gene Therapy with Neuroblastomaâ€Targeting Polymeric Nanoparticles for Potential Theranostic Applications (Small 9/2016). Small, 2016, 12, 1110-1110.	5.2	2
27	Exosome and polymersome for potential theranostic applications. Macromolecular Research, 2016, 24, 577-586.	1.0	5
28	Bioinspired tuning of glycol chitosan for 3D cell culture. NPG Asia Materials, 2016, 8, e309-e309.	3.8	44
29	Magnetic field-responsive release of transforming growth factor beta 1 from heparin-modified alginate ferrogels. Carbohydrate Polymers, 2016, 151, 467-473.	5.1	41
30	Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice. Molecular Therapy - Nucleic Acids, 2016, 5, e280.	2.3	41
31	Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation. Carbohydrate Polymers, 2016, 139, 82-89.	5.1	17
32	Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. Journal of Controlled Release, 2016, 223, 197-206.	4.8	76
33	The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment. Nanoscale, 2015, 7, 20095-20104.	2.8	33
34	Tuning the sphere-to-rod transition in the self-assembly of thermoresponsive polymer hybrids. Colloids and Surfaces B: Biointerfaces, 2015, 136, 612-617.	2.5	8
35	Effect of the Mechanical Properties of Cell-Interactive Hydrogels on a Control of Cell Phenotype. Porrime, 2015, 39, 412-417.	0.0	3
36	The height of cell-adhesive nanoposts generated by block copolymer/surfactant complex systems influences the preosteoblast phenotype. Colloids and Surfaces B: Biointerfaces, 2014, 123, 679-684.	2.5	3

#	Article	IF	CITATIONS
37	Shear Reversible Cell/Microsphere Aggregate as an Injectable for Tissue Regeneration. Macromolecular Bioscience, 2014, 14, 740-748.	2.1	15
38	Doxorubicin-Loaded Alginate- <i>g</i> -Poly(<i>N</i> -isopropylacrylamide) Micelles for Cancer Imaging and Therapy. ACS Applied Materials & Interfaces, 2014, 6, 22069-22077.	4.0	72
39	Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. Journal of Controlled Release, 2014, 196, 146-153.	4.8	52
40	Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	36
41	Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis. Journal of Controlled Release, 2013, 166, 38-45.	4.8	37
42	Preparation and characterization of nonaarginine-modified chitosan nanoparticles for siRNA delivery. Carbohydrate Polymers, 2013, 92, 57-62.	5.1	55
43	Co-delivery of Vascular Endothelial Growth Factor and Angiopoietin-1 Using Injectable Microsphere/Hydrogel Hybrid Systems for Therapeutic Angiogenesis. Pharmaceutical Research, 2013, 30, 2157-2165.	1.7	17
44	Injectable microsphere/hydrogel hybrid system containing heat shock protein as therapy in a murine myocardial infarction model. Journal of Drug Targeting, 2013, 21, 822-829.	2.1	18
45	Effect of nano-structured polymer surfaces on the phenotype control of preosteoblasts. Macromolecular Research, 2012, 20, 1205-1208.	1.0	1
46	Fabrication of Nanopatterned Surfaces for Tissue Engineering. , 2012, , .		2
47	T Cell-Specific siRNA Delivery Using Antibody-Conjugated Chitosan Nanoparticles. Bioconjugate Chemistry, 2012, 23, 1174-1180.	1.8	75
48	Responses of preosteoblasts on nano-structured polymer surfaces prepared from block copolymer–surfactant complexes. Soft Matter, 2012, 8, 7898.	1.2	6
49	Arginine-engrafted biodegradable polymer for the systemic delivery of therapeutic siRNA. Biomaterials, 2012, 33, 1640-1650.	5.7	62
50	Alginate: Properties and biomedical applications. Progress in Polymer Science, 2012, 37, 106-126.	11.8	5,658
51	Quantifying specific cell–polymer interactions using fluorescence correlation spectroscopy. Soft Matter, 2011, 7, 4876.	1.2	2
52	Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. Journal of Controlled Release, 2011, 150, 56-62.	4.8	99
53	Oligoarginine-modified chitosan for siRNA delivery. Journal of Controlled Release, 2011, 152, e165-e166.	4.8	8
54	Alginate/hyaluronate hydrogels for cartilage regeneration. Journal of Controlled Release, 2011, 152, e233-e234	4.8	3

#	Article	IF	CITATIONS
55	Hydrogel-based biomimetic environment for inÂvitro modulation of branching morphogenesis. Biomaterials, 2011, 32, 6754-6763.	5.7	61
56	Facile control of RGD-alginate/hyaluronate hydrogel formation for cartilage regeneration. Carbohydrate Polymers, 2011, 86, 1107-1112.	5.1	37
57	The Effect of Conjugating RGD into 3D Alginate Hydrogels on Adipogenic Differentiation of Human Adiposeâ€Derived Stromal Cells. Macromolecular Bioscience, 2011, 11, 673-679.	2.1	62
58	The effect of spacer arm length of an adhesion ligand coupled to an alginate gel on the control of fibroblast phenotype. Biomaterials, 2010, 31, 5545-5551.	5.7	54
59	Stress response of fibroblasts adherent to the surface of plasma-treated poly(lactic-co-glycolic acid) nanofiber matrices. Colloids and Surfaces B: Biointerfaces, 2010, 77, 90-95.	2.5	31
60	Active Blood Vessel Formation in the Ischemic Hindlimb Mouse Model Using a Microsphere/Hydrogel Combination System. Pharmaceutical Research, 2010, 27, 767-774.	1.7	58
61	Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery. Journal of Controlled Release, 2010, 146, 61-67.	4.8	96
62	Effect of Calcium Ion Concentrations on Osteogenic Differentiation and Hematopoietic Stem Cell Niche-Related Protein Expression in Osteoblasts. Tissue Engineering - Part A, 2010, 16, 2467-2473.	1.6	127
63	Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. Journal of Controlled Release, 2009, 137, 196-202.	4.8	79
64	lschemic heart diseases: Current treatments and future. Journal of Controlled Release, 2009, 140, 194-202.	4.8	60
65	Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. Journal of Controlled Release, 2009, 139, 146-152.	4.8	85
66	Injectable Microsphere/Hydrogel Combination Systems for Localized Protein Delivery. Macromolecular Bioscience, 2009, 9, 671-676.	2.1	44
67	Shearâ€reversibly Crosslinked Alginate Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 895-901.	2.1	98
68	Local and Sustained Vascular Endothelial Growth Factor Delivery for Angiogenesis Using an Injectable System. Pharmaceutical Research, 2009, 26, 1739-1744.	1.7	89
69	Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 2009, 61, 1020-1032.	6.6	486
70	Quantifying Interactions between Cell Receptors and Adhesion Ligandâ€Modified Polymers in Solution. Macromolecular Bioscience, 2008, 8, 140-145.	2.1	24
71	Differentiation stage alters matrix control of stem cells. Journal of Biomedical Materials Research - Part A, 2008, 85A, 145-156.	2.1	85
72	Effect of tying conditions on the knot security of suture materials. Journal of Applied Polymer Science, 2008, 109, 918-922.	1.3	5

#	Article	IF	CITATIONS
73	T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell, 2008, 134, 577-586.	13.5	542
74	Surface Characteristics of Plasma-Treated PLGA Nanofibers. Macromolecular Symposia, 2007, 249-250, 103-108.	0.4	20
75	Breast Reconstruction. , 2007, , 519-534.		Ο
76	Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation. Journal of Biomedical Materials Research - Part A, 2007, 83A, 970-979.	2.1	45
77	In vitro and in vivo degradation behaviors of synthetic absorbable bicomponent monofilament suture prepared with poly(p-dioxanone) and its copolymer. Polymer Degradation and Stability, 2007, 92, 667-674.	2.7	49
78	Polymeric protein delivery systems. Progress in Polymer Science, 2007, 32, 669-697.	11.8	361
79	Chitosan and its derivatives for gene delivery. Macromolecular Research, 2007, 15, 195-201.	1.0	55
80	Plasma-treated poly(lactic-co-glycolic acid) nanofibers for tissue engineering. Macromolecular Research, 2007, 15, 238-243.	1.0	106
81	RGD Island Spacing Controls Phenotype of Primary Human Fibroblasts Adhered to Ligand-Organized Hydrogels. Macromolecular Research, 2007, 15, 469-472.	1.0	12
82	Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor. International Journal of Biological Macromolecules, 2006, 38, 140-144.	3.6	96
83	Physicochemical characteristics of poly(2-ethyl-2-oxazoline)/poly(ε-caprolactone) block copolymer micelles in water. Polymer Bulletin, 2006, 56, 385-393.	1.7	10
84	Polymers for Microfluidic Chips. Macromolecular Research, 2006, 14, 121-128.	1.0	33
85	N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. Journal of Controlled Release, 2006, 115, 37-45.	4.8	233
86	Regenerated Silk Fibroin Nanofibers: Water Vapor-Induced Structural Changes and Their Effects on the Behavior of Normal Human Cells. Macromolecular Bioscience, 2006, 6, 285-292.	2.1	144
87	Complex formation between plasmid DNA and self-aggregates of deoxycholic acid-modified chitosan. Polymer, 2005, 46, 8107-8112.	1.8	33
88	Design parameters of polymers for tissue engineering applications. Macromolecular Research, 2005, 13, 277-284.	1.0	8
89	Stability of ionic complexes prepared from plasmid DNA and self-aggregated chitosan nanoparticles. Macromolecular Research, 2005, 13, 542-544.	1.0	8
90	Nanoscale RGD Peptide Organization Regulates Cell Proliferation and Differentiation. Materials Research Society Symposia Proceedings, 2004, 845, 59.	0.1	0

#	Article	IF	CITATIONS
91	Controlling Degradation of Hydrogels via the Size of Crosslinked Junctions. Advanced Materials, 2004, 16, 1917-1921.	11.1	112
92	Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials, 2004, 25, 2461-2466.	5.7	153
93	Nanoscale Adhesion Ligand Organization Regulates Osteoblast Proliferation and Differentiation. Nano Letters, 2004, 4, 1501-1506.	4.5	164
94	Controlled Growth Factor Delivery for Tissue Engineering. ACS Symposium Series, 2003, , 73-83.	0.5	6
95	Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. Journal of Controlled Release, 2003, 87, 49-56.	4.8	161
96	Nondestructively Probing the Cross-Linking Density of Polymeric Hydrogels. Macromolecules, 2003, 36, 7887-7890.	2.2	14
97	Evaluation of Chain Stiffness of Partially Oxidized Polyguluronate. Biomacromolecules, 2002, 3, 1129-1134.	2.6	54
98	Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer, 2002, 43, 6239-6246.	1.8	157
99	Structural Characteristics of Size-Controlled Self-Aggregates of Deoxycholic Acid-Modified Chitosan and Their Application as a DNA Delivery Carrier. Bioconjugate Chemistry, 2001, 12, 932-938.	1.8	200
100	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880.	23.0	4,623
100	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880. Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1.	23.0 0.1	4,623 0
100 101 102	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880. Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1. Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57.	23.0 0.1 1.1	4,623 0 14
100 101 102	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880. Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1. Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57. Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements. Fibers and Polymers, 2001, 2, 71-74.	23.0 0.1 1.1	4,623 0 14 15
100 101 102 103	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880. Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1. Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57. Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements. Fibers and Polymers, 2001, 2, 71-74. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 56, 228-233.	23.0 0.1 1.1 1.1 3.0	4,623 0 14 15 157
100 101 102 103 104	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880. Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1. Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57. Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements. Fibers and Polymers, 2001, 2, 71-74. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 56, 228-233. Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress, 2001, 17, 945-950.	23.0 0.1 1.1 3.0 1.3	4,623 0 14 15 157 573
 100 101 102 103 104 105 106 	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880.Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1.Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57.Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements. Fibers and Polymers, 2001, 2, 71-74.Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 56, 228-233.Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress, 2001, 17, 945-950.Sustained and Controlled Release of Daunomycin from CrossâtEinked Poly(aldehyde guluronate) Hydrogels. Journal of Pharmaceutical Sciences, 2000, 89, 910-919.	23.0 0.1 1.1 3.0 1.3 1.6	4,623 0 14 15 157 573 66
100 101 102 103 104 105 106	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880. Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1. Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57. Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements. Fibers and Polymers, 2001, 2, 71-74. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 56, 228-233. Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress, 2001, 17, 945-950. Sustained and Controlled Release of Daunomycin from Crossâ&Linked Poly(aldehyde guluronate) Hydrogels. Journal of Pharmaceutical Sciences, 2000, 89, 910-919. Controlled growth factor release from synthetic extracellular matrices. Nature, 2000, 408, 998-1000.	23.0 0.1 1.1 3.0 1.3 1.6 13.7	 4,623 0 14 15 157 573 66 454

#	Article	IF	CITATIONS
109	Synthesis of Triarmed Poly(ethylene oxide)â^'Deoxycholic Acid Conjugate and Its Micellar Characteristics. Langmuir, 2000, 16, 10566-10568.	1.6	34
110	Degradation Behavior of Covalently Cross-Linked Poly(aldehyde guluronate) Hydrogels. Macromolecules, 2000, 33, 97-101.	2.2	194
111	Rigidity of Two-Component Hydrogels Prepared from Alginate and Poly(ethylene glycol)â^'Diamines. Macromolecules, 1999, 32, 5561-5566.	2.2	218
112	Physicochemical Characteristics of Self-Aggregates of Hydrophobically Modified Chitosans. Langmuir, 1998, 14, 2329-2332.	1.6	141
113	Structural Determination and Interior Polarity of Self-Aggregates Prepared from Deoxycholic Acid-Modified Chitosan in Water. Macromolecules, 1998, 31, 378-383.	2.2	209
114	Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules. , 1997, 63, 425-432.		126
115	Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules. , 1997, 63, 425.		1
116	Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 1995, 16, 1211-1216.	5.7	399
117	Effect of Solvent on the Characteristics of Electrospun Regenerated Silk Fibroin Nanofibers. Key Engineering Materials, 0, 342-343, 813-816.	0.4	17