Tony Low

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5152703/publications.pdf

Version: 2024-02-01

		31976	17105
169	15,492	53	122
papers	citations	h-index	g-index
174	174	174	16352
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano, 2014, 8, 1086-1101.	14.6	1,165
2	Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotechnology, 2015, 10, 534-540.	31.5	1,099
3	Polaritons in layered two-dimensional materials. Nature Materials, 2017, 16, 182-194.	27.5	963
4	Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 2013, 7, 394-399.	31.4	815
5	Tunable optical properties of multilayer black phosphorus thin films. Physical Review B, 2014, 90, .	3.2	592
6	Structure and Electronic Transport in Graphene Wrinkles. Nano Letters, 2012, 12, 3431-3436.	9.1	540
7	Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Materials and Applications, 2020, 4, .	7.9	528
8	Plasmons and Screening in Monolayer and Multilayer Black Phosphorus. Physical Review Letters, 2014, 113, 106802.	7.8	515
9	Photoconductivity of biased graphene. Nature Photonics, 2013, 7, 53-59.	31.4	467
10	Valley Splitting and Polarization by the Zeeman Effect in Monolayer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow>< Physical Review Letters, 2014, 113, 266804.</mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	mml:mn>2	2 </td
11	Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature Communications, 2014, 5, 3087.	12.8	370
12	Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review B, 2016, 94, .	3.2	347
13	Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films. Nature Materials, 2018, 17, 800-807.	27.5	344
14	Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nature Communications, 2013, 4, 1951.	12.8	280
15	Tunable Light–Matter Interaction and the Role of Hyperbolicity in Graphene–hBN System. Nano Letters, 2015, 15, 3172-3180.	9.1	260
16	Strain-Induced Pseudomagnetic Field for Novel Graphene Electronics. Nano Letters, 2010, 10, 3551-3554.	9.1	252
17	Infrared fingerprints of few-layer black phosphorus. Nature Communications, 2017, 8, 14071.	12.8	228
18	Generation of Pure Bulk Valley Current in Graphene. Physical Review Letters, 2013, 110, 046601.	7.8	221

#	Article	IF	CITATIONS
19	Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics. Physical Review Letters, 2016, 116, 066804.	7.8	212
20	Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nature Nanotechnology, 2019, 14, 313-319.	31.5	210
21	Gate-controlled guiding of electrons in graphene. Nature Nanotechnology, 2011, 6, 222-225.	31.5	203
22	Origin of photoresponse in black phosphorus phototransistors. Physical Review B, 2014, 90, .	3.2	178
23	Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nature Photonics, 2020, 14, 578-584.	31.4	172
24	Increased Responsivity of Suspended Graphene Photodetectors. Nano Letters, 2013, 13, 1644-1648.	9.1	171
25	Gas identification with graphene plasmons. Nature Communications, 2019, 10, 1131.	12.8	154
26	Multilayer Black Phosphorus as a Versatile Mid-Infrared Electro-optic Material. Nano Letters, 2016, 16, 1683-1689.	9.1	151
27	Tunable Phonon-Induced Transparency in Bilayer Graphene Nanoribbons. Nano Letters, 2014, 14, 4581-4586.	9.1	129
28	Layer-Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. ACS Photonics, 2017, 4, 8-14.	6.6	125
29	Nanomaterialâ€Based Plasmonâ€Enhanced Infrared Spectroscopy. Advanced Materials, 2018, 30, e1704896.	21.0	124
30	Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Science Advances, 2018, 4, eaap9977.	10.3	122
31	Berry curvature dipole current in the transition metal dichalcogenides family. Physical Review B, 2018, 98, .	3.2	121
32	Conductance Asymmetry of Graphene p-n Junction. IEEE Transactions on Electron Devices, 2009, 56, 1292-1299.	3.0	114
33	The 2021 quantum materials roadmap. JPhys Materials, 2020, 3, 042006.	4.2	111
34	Ultrafast Graphene Light Emitters. Nano Letters, 2018, 18, 934-940.	9.1	109
35	Cooling of photoexcited carriers in graphene by internal and substrate phonons. Physical Review B, 2012, 86, .	3.2	100
36	Midinfrared Electro-optic Modulation in Few-Layer Black Phosphorus. Nano Letters, 2017, 17, 6315-6320.	9.1	96

#	Article	IF	CITATIONS
37	Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing. Physical Review Applied, 2018, 9, .	3.8	93
38	Anisotropic exciton Stark shift in black phosphorus. Physical Review B, 2015, 91, .	3.2	92
39	Nanophotonic biosensors harnessing van der Waals materials. Nature Communications, 2021, 12, 3824.	12.8	88
40	Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities. Physical Review B, 2016, 93, .	3.2	85
41	Electron Pumping in Graphene Mechanical Resonators. Nano Letters, 2012, 12, 850-854.	9.1	77
42	Quantum Behavior of Graphene Transistors near the Scaling Limit. Nano Letters, 2012, 12, 1417-1423.	9.1	77
43	MoTe ₂ Lateral Homojunction Field-Effect Transistors Fabricated using Flux-Controlled Phase Engineering. ACS Nano, 2019, 13, 8035-8046.	14.6	75
44	Atomic and electronic structure of exfoliated black phosphorus. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	73
45	Giant Enhancement of Photoluminescence Emission in WS ₂ -Two-Dimensional Perovskite Heterostructures. Nano Letters, 2019, 19, 4852-4860.	9.1	72
46	Chiral plasmon in gapped Dirac systems. Physical Review B, 2016, 93, .	3.2	71
47	Topological currents in black phosphorus with broken inversion symmetry. Physical Review B, 2015, 92,	3.2	69
48	Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nature Communications, 2017, 8, 1867.	12.8	69
49	Mid-infrared Polarized Emission from Black Phosphorus Light-Emitting Diodes. Nano Letters, 2020, 20, 3651-3655.	9.1	69
50	Topological band evolution between Lieb and kagome lattices. Physical Review B, 2019, 99, .	3.2	66
51	Complete Complex Amplitude Modulation with Electronically Tunable Graphene Plasmonic Metamolecules. ACS Nano, 2020, 14, 1166-1175.	14.6	65
52	Tuning Two-Dimensional Hyperbolic Plasmons in Black Phosphorus. Physical Review Applied, 2019, 12, .	3.8	59
53	Controlled p-type substitutional doping in large-area monolayer WSe ₂ crystals grown by chemical vapor deposition. Nanoscale, 2018, 10, 21374-21385.	5.6	58
54	Novel Midinfrared Plasmonic Properties of Bilayer Graphene. Physical Review Letters, 2014, 112, 116801.	7.8	56

#	Article	IF	CITATIONS
55	Image polaritons in boron nitride for extreme polariton confinement with low losses. Nature Communications, 2020, 11, 3649.	12.8	56
56	Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and Architectures. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 6-19.	3.6	56
57	Controlling photonic spin Hall effect via exceptional points. Physical Review B, 2019, 100, .	3.2	55
58	Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array. Nanotechnology, 2015, 26, 134002.	2.6	54
59	Anisotropic Acoustic Plasmons in Black Phosphorus. ACS Photonics, 2018, 5, 2208-2216.	6.6	54
60	Groupâ€Velocityâ€Controlled and Gateâ€Tunable Directional Excitation of Polaritons in Grapheneâ€Boron Nitride Heterostructures. Laser and Photonics Reviews, 2018, 12, 1800049.	8.7	51
61	Nanoscale electronic devices based on transition metal dichalcogenides. 2D Materials, 2019, 6, 032004.	4.4	51
62	Chiral Plasmons with Twisted Atomic Bilayers. Physical Review Letters, 2020, 125, 077401.	7.8	51
63	Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors. Nanoscale, 2020, 12, 23488-23496.	5.6	49
64	A Tight-Binding Study of the Ballistic Injection Velocity for Ultrathin-Body SOI MOSFETs. IEEE Transactions on Electron Devices, 2008, 55, 866-871.	3.0	47
65	Substrate Gating of Contact Resistance in Graphene Transistors. IEEE Transactions on Electron Devices, 2011, 58, 3925-3932.	3.0	47
66	Magnetoelectronic properties of multilayer black phosphorus. Physical Review B, 2015, 92, .	3.2	45
67	Self-Assembled Three-Dimensional Graphene-Based Polyhedrons Inducing Volumetric Light Confinement. Nano Letters, 2017, 17, 1987-1994.	9.1	45
68	Observation of chiral and slow plasmons in twisted bilayer graphene. Nature, 2022, 605, 63-68.	27.8	45
69	Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. Npj 2D Materials and Applications, 2018, 2, .	7.9	44
70	Topological nonlinear anomalous Nernst effect in strained transition metal dichalcogenides. Physical Review B, 2019, 99, .	3.2	44
71	Electronic transport properties of a tilted graphene <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>n</mml:mi><td>mrðw> <td>ıml:math>jun</td></td></mml:mrow></mml:math>	mrðw> <td>ıml:math>jun</td>	ıml:math>jun
72	Plasmon–Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene. Nano Letters, 2015, 15, 2582-2587.	9.1	43

#	Article	IF	Citations
73	Topological Band Engineering of Lieb Lattice in Phthalocyanine-Based Metal–Organic Frameworks. Nano Letters, 2020, 20, 1959-1966.	9.1	43
74	Resonant tunnelling diodes based on twisted black phosphorus homostructures. Nature Electronics, 2021, 4, 269-276.	26.0	41
75	Scaling of the Energy Gap in Pattern-Hydrogenated Graphene. Nano Letters, 2011, 11, 4574-4578.	9.1	40
76	Directive Surface Plasmons on Tunable Two-Dimensional Hyperbolic Metasurfaces and Black Phosphorus: Green's Function and Complex Plane Analysis. IEEE Transactions on Antennas and Propagation, 2017, 65, 1174-1186.	5.1	39
77	Multilayered black phosphorus: From a tight-binding to a continuum description. Physical Review B, 2017, 96, .	3.2	39
78	Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Applied Physics Reviews, 2020, 7, 021403.	11.3	36
79	Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nature Communications, 2021, 12, 938.	12.8	33
80	ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics. Nature Communications, 2022, 13, .	12.8	32
81	Electron mobility in Ge and strained-Si channel ultrathin-body metal-oxide semi conductor field-effect transistors. Applied Physics Letters, 2004, 85, 2402-2404.	3.3	31
82	Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode. Npj 2D Materials and Applications, 2018, 2, .	7.9	31
83	Tunable large Berry dipole in strained twisted bilayer graphene. Physical Review B, 2021, 103, .	3.2	31
84	Substrate-Sensitive Mid-infrared Photoresponse in Graphene. ACS Nano, 2014, 8, 8350-8356.	14.6	30
85	Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials. Physical Review B, 2017, 95, .	3.2	29
86	Signatures of Disorder in the Minimum Conductivity of Graphene. Nano Letters, 2011, 11, 1319-1322.	9.1	27
87	Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides. Physical Review B, 2017, 96, .	3.2	27
88	Switchable and unidirectional plasmonic beacons in hyperbolic two-dimensional materials. Physical Review B, 2019, 99, .	3.2	27
89	Magnetic Weyl semimetals with diamond structure realized in spinel compounds. Physical Review B, 2020, 101, .	3.2	27
90	Ballistic-Ohmic quantum Hall plateau transition in a graphene <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>n</mml:mi>Application of the property of the p</mml:mrow></mml:math>	mrow> <td>ml:math>jund</td>	ml:math>jund

#	Article	IF	CITATIONS
91	Superluminal plasmons with resonant gain in population inverted bilayer graphene. Physical Review B, 2018, 98, .	3.2	26
92	Anomalous Temperature Dependence in Metal–Black Phosphorus Contact. Nano Letters, 2018, 18, 26-31.	9.1	25
93	Plasmonic Gas Sensing with Graphene Nanoribbons. Physical Review Applied, 2020, 13, .	3.8	25
94	Tunable plasmon-phonon polaritons in anisotropic 2D materials on hexagonal boron nitride. Nanophotonics, 2020, 9, 3909-3920.	6.0	24
95	Photonic and Plasmonic Guided Modes in Graphene–Silicon Photonic Crystals. ACS Photonics, 2015, 2, 1552-1558.	6.6	23
96	A perspective of twisted photonic structures. Applied Physics Letters, 2021, 119, .	3.3	23
97	Performance Analysis of III-V Materials in a Double-Gate nano-MOSFET., 2007,,.		22
98	Gate tunable light–matter interaction in natural biaxial hyperbolic van der Waals heterostructures. Nanophotonics, 2022, 11, 2329-2340.	6.0	22
99	Electrical control of excitons in van der Waals heterostructures with type-II band alignment. Physical Review B, 2018, 98, .	3.2	21
100	Temporal control of graphene plasmons. Physical Review B, 2018, 98, .	3.2	21
101	Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. Nano Letters, 2020, 20, 8711-8718.	9.1	21
102	High-Performance Black Phosphorus MOSFETs Using Crystal Orientation Control and Contact Engineering. IEEE Electron Device Letters, 2017, 38, 685-688.	3.9	20
103	Electron and hole transport in disordered monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>:m8.2<td>ก!:r<u>ช</u>eub></td></td></mml:mn></mml:msub></mml:math>	:m 8. 2 <td>ก!:r<u>ช</u>eub></td>	ก !:r<u>ช</u>e ub>
104	Visualization and Manipulation of Bilayer Graphene Quantum Dots with Broken Rotational Symmetry and Nontrivial Topology. Nano Letters, 2020, 20, 8682-8688.	9.1	20
105	Boosting quantum yields in two-dimensional semiconductors via proximal metal plates. Nature Communications, 2021, 12, 7095.	12.8	20
106	Nonlocal electromagnetic response of graphene nanostructures. Physical Review B, 2015, 91, .	3.2	18
107	Toggling Nearâ€Field Directionality via Polarization Control of Surface Waves. Laser and Photonics Reviews, 2021, 15, 2000388.	8.7	17
108	Giant Anomalous Hall Effect due to Double-Degenerate Quasiflat Bands. Physical Review Letters, 2021, 126, 106601.	7.8	16

#	Article	IF	Citations
109	Hyperbolicity in two-dimensional transition metal ditellurides induced by electronic bands nesting. Physical Review B, 2020, 102, .	3.2	15
110	Bipolar Electric-Field Switching of Perpendicular Magnetic Tunnel Junctions through Voltage-Controlled Exchange Coupling. Nano Letters, 2022, 22, 622-629.	9.1	15
111	NEGF analysis of InGaAs Schottky barrier double gate MOSFETs. , 2008, , .		14
112	Graphene-Side-Gate Engineering. IEEE Electron Device Letters, 2012, 33, 330-332.	3.9	14
113	Ultracompact Amplitude Modulator by Coupling Hyperbolic Polaritons over a Graphene-Covered Gap. ACS Photonics, 2018, 5, 544-551.	6.6	13
114	Polaritonic Vortices with a Half-Integer Charge. Nano Letters, 2021, 21, 9256-9261.	9.1	13
115	Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Science Advances, 2022, 8, .	10.3	13
116	Spatial/temporal photocurrent and electronic transport in monolayer molybdenum disulfide grown by chemical vapor deposition. Applied Physics Letters, 2016, 108, .	3.3	12
117	Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors. Physical Review Materials, 2018, 2 Structure and basal twinning of topological insulator < mml:math	2.4	12
118	mathvariant="normal">B <mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi< th=""><th>2.4</th><th>12</th></mml:mi<></mml:msub></mml:msub>	2.4	12
119	mathvariant="normal">e <mml:mn>3</mml:mn>	3.2	10
120	Emerging chiral optics from chiral interfaces. Physical Review B, 2021, 103, .	3.2	10
121	Large-scale interlayer rotations and Te grain boundaries in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>(<td>:n204 < mm</td><td>nl:1100w><m< td=""></m<></td></mml:mo></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	:n204 < mm	nl: 110 0w> <m< td=""></m<>
122	Accessing the Exceptional Points in a Graphene Plasmon–Vibrational Mode Coupled System. ACS Photonics, 2021, 8, 3241-3248.	6.6	10
123	Simulation of spin field effect transistors: Effects of tunneling and spin relaxation on performance. Journal of Applied Physics, 2010, 108, 083702.	2.5	9
124	Theoretical Overview of Black Phosphorus. , 2017, , 381-412.		9
125	Direct Investigation of the Birefringent Optical Properties of Black Phosphorus with Picosecond Interferometry. Advanced Optical Materials, 2018, 6, 1700831.	7.3	9
126	Engineering valley quantum interference in anisotropic van der Waals heterostructures. Physical Review B, 2020, 102, .	3.2	9

#	Article	IF	Citations
127	Modeling of spin metal-oxide-semiconductor field-effect transistor: A nonequilibrium Green's function approach with spin relaxation. Journal of Applied Physics, 2008, 104, 094511.	2.5	8
128	Hybridized Radial and Edge Coupled 3D Plasmon Modes in Selfâ€Assembled Graphene Nanocylinders. Small, 2021, 17, e2100079.	10.0	8
129	Twisted Two-Dimensional Material Stacks for Polarization Optics. Physical Review Letters, 2022, 128, .	7.8	8
130	Plasmons and screening in finite-bandwidth two-dimensional electron gas. Physical Review B, 2020, 102, .	3.2	7
131	Bidirectional switching assisted by interlayer exchange coupling in asymmetric magnetic tunnel junctions. Physical Review B, 2020, 101, .	3.2	7
132	Signatures of quantum transport through two-dimensional structures with correlated and anticorrelated interfaces. Physical Review B, 2008, 78, .	3.2	6
133	Ferromagnetic phase of the spinel compound <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MgV</mml:mi><mml:mathvariant="normal">O<mml:mn>4</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> and its spintronics properties. Physical Review B. 2020, 102	ກກະ23.2	nl:mn>
134	Signatures of subband excitons in few-layer black phosphorus. Physical Review B, 2021, 103, .	3.2	6
135	Enhancement of voltage controlled magnetic anisotropy (VCMA) through electron depletion. Journal of Applied Physics, 2022, 131, .	2.5	6
136	Effect of dual gate control on the alternating current performance of graphene radio frequency device. Journal of Applied Physics, 2013, 114, 044307.	2.5	5
137	Pumping electrons in graphene to theMpoint in the Brillouin zone: Emergence of anisotropic plasmons. Physical Review B, 2016, 94, .	3.2	5
138	Semianalytical model of the contact resistance in two-dimensional semiconductors. Physical Review B, 2017, 96, .	3.2	5
139	Phonon-assisted carrier transport through a lattice-mismatched interface. NPG Asia Materials, 2019, 11, .	7.9	5
140	Nonretarded edge plasmon-polaritons in anisotropic two-dimensional materials. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 055201.	2.1	5
141	Convert Widespread Paraelectric Perovskite to Ferroelectrics. Physical Review Letters, 2022, 128, .	7.8	5
142	Optical interface engineering with on-demand magnetic surface conductivities. Physical Review B, 2022, 106, .	3.2	5
143	Broadband Achromatic Anomalous Mirror in Near-IR and Visible Frequency Ranges. ACS Photonics, 2017, 4, 1646-1652.	6.6	4
144	Ultracompact electro-optic waveguide modulator based on a graphene-covered î»/1000 plasmonic nanogap. Optics Express, 2021, 29, 13852.	3.4	4

#	Article	IF	Citations
145	Gigantic tunneling magnetoresistance in magnetic Weyl semimetal tunnel junctions. Physical Review B, $2021,104,.$	3.2	4
146	Gate-tunable giant tunneling electroresistance in van der Waals ferroelectric tunneling junctions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115829.	3.5	4
147	Current-induced torques in magnetic Weyl semimetal tunnel junctions. Physical Review B, 2021, 103, .	3.2	3
148	Transition Metal-Free Half-Metallicity in Two-Dimensional Gallium Nitride with a Quasi-Flat Band. Journal of Physical Chemistry Letters, 2021, 12, 12150-12156.	4.6	3
149	Methodological framework for materials discovery using machine learning. Physical Review Materials, 2022, 6, .	2.4	3
150	Groupâ€Velocityâ€Controlled and Gateâ€Tunable Directional Excitation of Polaritons in Grapheneâ€Boron Nitride Heterostructures (Laser Photonics Rev. 12(5)/2018). Laser and Photonics Reviews, 2018, 12, 1870024.	8.7	2
151	Chiral and hyperbolic plasmons in novel 2-D materials. , 2019, , 119-138.		2
152	Simple linear response model for predicting energy band alignment of two-dimensional vertical heterostructures. Physical Review B, 2021, 103, .	3.2	2
153	Graphene Plasmonics., 2017,, 104-140.		1
154	Graphene Plasmonic Metasurface for Beam Forming and Gas Sensing. , 2019, , .		1
155	Broadband focusing of acoustic plasmons in graphene with an applied current. Physical Review B, 2021, 104, .	3.2	1
156	All-graphene electronics by exploiting physical analogies. , 2010, , .		0
157	Graphene electronics and photonics (Invited). , 2013, , .		0
158	Tunable polarization rotation using black phosphorous monolayers. , 2016, , .		0
159	Graphene and black phosphorus for infrared optoelectronics. , 2017, , .		0
160	Electron Optics with Graphene p–n Junctions. , 0, , 141-158.		0
161	Graphene–BN Heterostructures. , 0, , 219-237.		0
162	Manipulating Light with 2D Materials. , 2018, , .		0

Tony Low

#	Article	IF	CITATIONS
163	Guest Editorial: Programmable Metamaterials for Software-Defined Electromagnetic Control. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 1-5.	3.6	0
164	Graphene Nanocylinders: Hybridized Radial and Edge Coupled 3D Plasmon Modes in Selfâ€Assembled Graphene Nanocylinders (Small 14/2021). Small, 2021, 17, 2170064.	10.0	0
165	Photonic and plasmonic guided modes in graphene-silicon photonic crystals. , 2016, , .		0
166	Thickness dependent third-harmonic generation in few-layer black phosphorus., 2016,,.		0
167	A Thin Film Black Phosphorus Light-Emitting Diode. , 2020, , .		0
168	Efficient domain wall motion in asymmetric magnetic tunnel junctions with vertical current flow. Journal of Magnetism and Magnetic Materials, 2022, 549, 168949.	2.3	0
169	Spatially composition-graded monolayer tungsten selenium telluride. Applied Physics Letters, 2022, 120, 231903.	3.3	0