Eric H Oelkers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5152675/publications.pdf Version: 2024-02-01

		10373	12933
218	19,144	72	131
papers	citations	h-index	g-index
226	226	226	11239
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Le potentiel du stockage géologique du CO2 par minéralisation. Annales Des Mines - Responsabilité Et Environnement, 2022, Nú 105, 57-62.	0.1	0
2	A pre-injection assessment of CO2 and H2S mineralization reactions at the Nesjavellir (Iceland) geothermal storage site. International Journal of Greenhouse Gas Control, 2022, 115, 103610.	2.3	11
3	A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 2022, 597, 120807.	1.4	30
4	Rates of carbon and oxygen isotope exchange between calcite and fluid at chemical equilibrium. Geochimica Et Cosmochimica Acta, 2022, 335, 369-382.	1.6	4
5	Magnesium and carbon isotope fractionation during hydrated Mg-carbonate mineral phase transformations. Geochimica Et Cosmochimica Acta, 2021, 293, 507-524.	1.6	18
6	Novel laboratory investigation of huff-n-puff gas injection for shale oils under realistic reservoir conditions. Fuel, 2021, 284, 118950.	3.4	43
7	Experimental study of epidote dissolution rates from pH 2 to 11 and temperatures from 25 to 200â€ ⁻ °C. Geochimica Et Cosmochimica Acta, 2021, 294, 70-88.	1.6	9
8	The role of fluid chemistry on permeability evolution in granite: Applications to natural and anthropogenic systems. Earth and Planetary Science Letters, 2021, 553, 116641.	1.8	9
9	Siderite nucleation pathways as a function of aqueous solution saturation state at 25°C. Chemical Geology, 2021, 559, 119947.	1.4	7
10	Nickel isotope fractionation as a function of carbonate growth rate during Ni coprecipitation with calcite. Geochimica Et Cosmochimica Acta, 2021, 299, 184-198.	1.6	15
11	Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: Freshwater versus Seawater. International Journal of Greenhouse Gas Control, 2021, 109, 103357.	2.3	12
12	Characterizing fluid flow paths in the Hellisheidi geothermal field using detailed fault mapping and stress-dependent permeability. Geothermics, 2021, 94, 102127.	1.5	8
13	The temporal evolution of the carbon isotope composition of calcite in the presence of cyanobacteria. Chemical Geology, 2021, 584, 120556.	1.4	6
14	An experimental study of basalt–seawater–CO2 interaction at 130°C. Geochimica Et Cosmochimica Acta, 2021, 308, 21-41.	1.6	28
15	An experimental study of sepiolite dissolution and growth rates as function of the aqueous solution saturation state at 60°C. Geochimica Et Cosmochimica Acta, 2021, 315, 276-294.	1.6	3
16	Magnesium isotope fractionation during hydrothermal seawater-basalt interaction. Geochimica Et Cosmochimica Acta, 2020, 272, 21-35.	1.6	21
17	An experimental study of sepiolite dissolution rates and mechanisms at 25â€ [−] °C. Geochimica Et Cosmochimica Acta, 2020, 270, 296-312.	1.6	11
18	Dawsonite and ankerite formation in the LDX-1 structure, Yinggehai basin, South China sea: An analogy for carbon mineralization in subsurface sandstone aquifers. Applied Geochemistry, 2020, 120, 104663.	1.4	7

#	Article	IF	CITATIONS
19	Experimental determination of Ni isotope fractionation during Ni adsorption from an aqueous fluid onto calcite surfaces. Geochimica Et Cosmochimica Acta, 2020, 273, 26-36.	1.6	15
20	Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 2020, 1, 90-102.	12.2	307
21	CarbFix2: CO2 and H2S mineralization during 3.5â€ ⁻ years of continuous injection into basaltic rocks at more than 250â€ ⁻ °C. Geochimica Et Cosmochimica Acta, 2020, 279, 45-66.	1.6	79
22	Extreme silicon isotope fractionation due to Si organic complexation: Implications for silica biomineralization. Earth and Planetary Science Letters, 2020, 541, 116287.	1.8	6
23	Nanoanalytical Identification of Siderite Dissolution-Coupled Pb Removal Mechanisms from Oxic and Anoxic Aqueous Solutions. ACS Earth and Space Chemistry, 2020, 4, 1966-1977.	1.2	2
24	An experimental study of gypsum dissolution coupled to CaCO3 precipitation and its application to carbon storage. Chemical Geology, 2019, 525, 447-461.	1.4	20
25	An integrated evaluation of enhanced oil recovery and geochemical processes for carbonated water injection in carbonate rocks. Journal of Petroleum Science and Engineering, 2019, 181, 106188.	2.1	27
26	Enhancement of cyanobacterial growth by riverine particulate material. Chemical Geology, 2019, 525, 143-167.	1.4	5
27	An Improved Understanding About CO2 EOR and CO2 Storage in Liquid-Rich Shale Reservoirs. , 2019, , .		14
28	Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology, 2019, 517, 34-43.	1.4	50
29	Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nature Communications, 2019, 10, 1983.	5.8	68
30	The experimental determination of equilibrium Si isotope fractionation factors among H4SiO4o, H3SiO4â^' and amorphous silica (SiO2·0.32 H2O) at 25 and 75 °C using the three-isotope method. Geochimica Et Cosmochimica Acta, 2019, 255, 49-68.	1.6	28
31	The rapid resetting of the Ca isotopic signatures of calcite at ambient temperature during its congruent dissolution, precipitation, and at equilibrium. Chemical Geology, 2019, 512, 1-10.	1.4	30
32	Using stable Mg isotope signatures to assess the fate of magnesium during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. Geochimica Et Cosmochimica Acta, 2019, 245, 542-555.	1.6	27
33	Solubility of the hydrated Mg-carbonates nesquehonite and dypingite from 5 to 35â€ ⁻ °C: Implications for CO2 storage and the relative stability of Mg-carbonates. Chemical Geology, 2019, 504, 123-135.	1.4	70
34	Citation for the 2018 C.C. Patterson Award to Sigurdur R. Gislason. Geochimica Et Cosmochimica Acta, 2019, 246, 585-590.	1.6	0
35	Experimental determination of the solubility product of dolomite at 50–253â€ [−] °C. Geochimica Et Cosmochimica Acta, 2018, 224, 262-275.	1.6	43
36	The temporal evolution of magnesium isotope fractionation during hydromagnesite dissolution, precipitation, and at equilibrium. Geochimica Et Cosmochimica Acta, 2018, 226, 36-49.	1.6	31

#	Article	IF	CITATIONS
37	Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochimica Et Cosmochimica Acta, 2018, 220, 348-366.	1.6	72
38	Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry, 2018, 91, 197-207.	1.4	52
39	The effect of the 2014-15 Bárðarbunga volcanic eruption on chemical denudation rates and the CO2 budget. Energy Procedia, 2018, 146, 53-58.	1.8	1
40	Carbon sequestration potential of altered mafic reservoirs. Energy Procedia, 2018, 146, 68-73.	1.8	8
41	Non-stoichiometric dissolution of sepiolite. Energy Procedia, 2018, 146, 74-80.	1.8	4
42	Evaluation and refinement of thermodynamic databases for mineral carbonation. Energy Procedia, 2018, 146, 81-91.	1.8	54
43	A brief history of CarbFix: Challenges and victories of the project's pilot phase. Energy Procedia, 2018, 146, 103-114.	1.8	52
44	The geology and hydrology of the CarbFix2 site, SW-Iceland. Energy Procedia, 2018, 146, 146-157.	1.8	21
45	The chemistry and potential reactivity of the CO2-H2S charged injected waters at the basaltic CarbFix2 site, Iceland. Energy Procedia, 2018, 146, 121-128.	1.8	19
46	Olivine dissolution rates: A critical review. Chemical Geology, 2018, 500, 1-19.	1.4	114
47	The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site. International Journal of Greenhouse Gas Control, 2018, 79, 117-126.	2.3	80
48	Stable and radiogenic strontium isotope fractionation during hydrothermal seawater-basalt interaction. Geochimica Et Cosmochimica Acta, 2018, 240, 131-151.	1.6	21
49	Convective mixing fingers and chemistry interaction in carbon storage. International Journal of Greenhouse Gas Control, 2017, 58, 52-61.	2.3	30
50	The impact of damming on riverine fluxes to the ocean: A case study from Eastern Iceland Water Research, 2017, 113, 124-138.	5.3	26
51	Assessing dolomite surface reactivity at temperatures from 40 to 120 °C by hydrothermal atomic force microscopy. Geochimica Et Cosmochimica Acta, 2017, 199, 130-142.	1.6	24
52	The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. International Journal of Greenhouse Gas Control, 2017, 58, 87-102.	2.3	93
53	The experimental determination of REE partition coefficients in the water-calcite system. Chemical Geology, 2017, 462, 30-43.	1.4	55
54	Pollution from the 2014–15 Bárðarbunga eruption monitored by snow cores from the Vatnajökull glacier, Iceland. Journal of Volcanology and Geothermal Research, 2017, 347, 371-396.	0.8	6

#	Article	IF	CITATIONS
55	High reactivity of deep biota under anthropogenic CO2 injection into basalt. Nature Communications, 2017, 8, 1063.	5.8	55
56	Ca and Mg isotope fractionation during the stoichiometric dissolution of dolomite at temperatures from 51 to 126 A°C and 5 bars CO2 pressure. Chemical Geology, 2017, 467, 76-88.	1.4	30
57	Experimental determination of barite dissolution and precipitation rates as a function of temperature and aqueous fluid composition. Geochimica Et Cosmochimica Acta, 2016, 194, 193-210.	1.6	64
58	Spatial and temporal variations of base cation release from chemical weathering on a hillslope scale. Chemical Geology, 2016, 441, 1-13.	1.4	41
59	The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood. Geochimica Et Cosmochimica Acta, 2016, 191, 32-46.	1.6	41
60	The control of carbonate mineral Mg isotope composition by aqueous speciation: Theoretical and experimental modeling. Chemical Geology, 2016, 445, 120-134.	1.4	84
61	Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 2016, 352, 1312-1314.	6.0	565
62	An experimental study of hydroxylbastnasite solubility in aqueous solutions at 25 °C. Chemical Geology, 2016, 430, 70-77.	1.4	20
63	The chemical composition of rivers and snow affected by the 2014/2015 Bárðarbunga eruption, Iceland. Journal of Volcanology and Geothermal Research, 2016, 316, 101-119.	0.8	16
64	On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation. Geochimica Et Cosmochimica Acta, 2016, 178, 195-209.	1.6	11
65	Dissolution rate of antigorite from a whole-rock experimental study of serpentinite dissolution from 2 <ph<9 25°c:="" applied<br="" at="" carbon="" enhanced="" for="" implications="" mitigation="" serpentinite="" via="" weathering.="">Geochemistry, 2015, 61, 259-271.</ph<9>	1.4	10
66	Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans. Geochimica Et Cosmochimica Acta, 2015, 166, 249-266.	1.6	29
67	Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 5. Results of K-feldspar hydrolysis experiments. Diqiu Huaxue, 2015, 34, 1-12.	0.5	21
68	The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica Et Cosmochimica Acta, 2015, 164, 127-145.	1.6	86
69	The continuous re-equilibration of carbon isotope compositions of hydrous Mg carbonates in the presence of cyanobacteria. Chemical Geology, 2015, 404, 41-51.	1.4	27
70	Solving the carbon-dioxide buoyancy challenge: The design and field testing of a dissolved CO2 injection system. International Journal of Greenhouse Gas Control, 2015, 37, 213-219.	2.3	96
71	The effect of the 2002 glacial flood on dissolved and suspended chemical fluxes in the SkaftÃ; river, Iceland. Journal of Volcanology and Geothermal Research, 2015, 301, 253-276.	0.8	8
72	The efficient long-term inhibition of forsterite dissolution by common soil bacteria and fungi at Earth surface conditions. Geochimica Et Cosmochimica Acta, 2015, 168, 222-235.	1.6	38

#	Article	IF	CITATIONS
73	The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chemical Geology, 2015, 395, 50-66.	1.4	170
74	The surface area and reactivity of granitic soils: I. Dissolution rates of primary minerals as a function of depth and age deduced from field observations. Geoderma, 2015, 237-238, 21-35.	2.3	15
75	Dissolution rates of actinolite and chlorite from a whole-rock experimental study of metabasalt dissolution from 2 â‰₱H ≤12 at 25 °C. Chemical Geology, 2014, 390, 100-108.	1.4	39
76	On the colorimetric measurement of aqueous Si in the presence of organic ligands and common pH buffering agents. Mineralogical Magazine, 2014, 78, 1431-1436.	0.6	4
77	Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia, 2014, 63, 4561-4574.	1.8	52
78	Carbon Storage in Basalt. Science, 2014, 344, 373-374.	6.0	202
79	Biotite surface chemistry as a function of aqueous fluid composition. Geochimica Et Cosmochimica Acta, 2014, 128, 58-70.	1.6	35
80	Kinetic and Thermodynamic Controls of Divalent Metals Isotope Composition in Carbonate: Experimental Investigations and Applications. Procedia Earth and Planetary Science, 2014, 10, 168-172.	0.6	9
81	Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin. Chemical Geology, 2014, 385, 84-91.	1.4	76
82	Dawsonite formation in the Beier Sag, Hailar Basin, NE China tuff: A natural analog for mineral carbon storage. Applied Geochemistry, 2014, 48, 155-167.	1.4	27
83	The role of silicate surfaces on calcite precipitation kinetics. Geochimica Et Cosmochimica Acta, 2014, 135, 231-250.	1.6	40
84	Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry. Earth and Planetary Science Letters, 2014, 395, 91-100.	1.8	45
85	Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22°C. Geochimica Et Cosmochimica Acta, 2014, 139, 154-172.	1.6	69
86	An experimental study of basaltic glass–H2O–CO2 interaction at 22 and 50°C: Implications for subsurface storage of CO2. Geochimica Et Cosmochimica Acta, 2014, 126, 123-145.	1.6	72
87	The chemistry and element fluxes of the July 2011 MúlakvÃsl and KaldakvÃsl glacial floods, Iceland. Journal of Volcanology and Geothermal Research, 2014, 273, 41-57.	0.8	16
88	Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration – Implications for the global Mg-cycle. Earth and Planetary Science Letters, 2014, 392, 166-176.	1.8	78
89	The experimental determination of hydromagnesite precipitation rates at 22.5–75ºC. Mineralogical Magazine, 2014, 78, 1405-1416.	0.6	21
90	Monitoring permanent CO2 storage by in situ mineral carbonation using a reactive tracer technique. Energy Procedia, 2014, 63, 4180-4185.	1.8	21

#	Article	IF	CITATIONS
91	An experimental study of tremolite dissolution rates as a function of pH and temperature: Implications for tremolite toxicity and its use in carbon storage. Mineralogical Magazine, 2014, 78, 1449-1464.	0.6	7
92	The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. International Journal of Greenhouse Gas Control, 2013, 12, 399-418.	2.3	96
93	Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquatic Geochemistry, 2013, 19, 1-24.	1.5	85
94	The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater. Earth and Planetary Science Letters, 2013, 369-370, 138-147.	1.8	122
95	Do organic ligands affect forsterite dissolution rates?. Applied Geochemistry, 2013, 39, 69-77.	1.4	33
96	Does temperature or runoff control the feedback between chemical denudation and climate? Insights from NE Iceland. Geochimica Et Cosmochimica Acta, 2013, 107, 65-81.	1.6	49
97	Experimental determination of rhyolitic glass dissolution rates at 40–200°C and 2 <ph<10.1. Geochimica Et Cosmochimica Acta, 2013, 100, 251-263.</ph<10.1. 	1.6	37
98	Do carbonate precipitates affect dissolution kinetics?. Chemical Geology, 2013, 337-338, 56-66.	1.4	47
99	The Dissolution Rates of SiO ₂ Nanoparticles As a Function of Particle Size. Environmental Science & Composition & Composition Science & Composition Science & Composition & C	4.6	80
100	Does the presence of heterotrophic bacterium Pseudomonas reactans affect basaltic glass dissolution rates?. Chemical Geology, 2012, 296-297, 1-18.	1.4	30
101	Experimental quantification of the effect of Mg on calcite–aqueous fluid oxygen isotope fractionation. Chemical Geology, 2012, 310-311, 97-105.	1.4	39
102	Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochimica Et Cosmochimica Acta, 2012, 76, 161-174.	1.6	93
103	An experimental study of the interaction of basaltic riverine particulate material and seawater. Geochimica Et Cosmochimica Acta, 2012, 77, 108-120.	1.6	68
104	An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200°C as a function of pH, aqueous solution composition and chemical affinity. Geochimica Et Cosmochimica Acta, 2012, 83, 93-109.	1.6	105
105	Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from Mg isotopes. Geochimica Et Cosmochimica Acta, 2012, 92, 170-183.	1.6	101
106	Riverine particulate material dissolution in seawater and its implications for the global cycles of the elements. Comptes Rendus - Geoscience, 2012, 344, 646-651.	0.4	39
107	Can accurate kinetic laws be created to describe chemical weathering?. Comptes Rendus - Geoscience, 2012, 344, 568-585.	0.4	51
108	Riverine particulate material dissolution as a significant flux of strontium to the oceans. Earth and Planetary Science Letters, 2012, 355-356, 51-59.	1.8	66

#	Article	IF	CITATIONS
109	Ocean margins: The missing term in oceanic element budgets?. Eos, 2011, 92, 217-218.	0.1	80
110	Water: Is There a Global Crisis?. Elements, 2011, 7, 157-162.	0.5	67
111	Experimental determination of struvite dissolution and precipitation rates as a function of pH. Applied Geochemistry, 2011, 26, 921-928.	1.4	27
112	Is silt the most influential soil grain size fraction?. Applied Geochemistry, 2011, 26, S119-S122.	1.4	5
113	Does runoff or temperature control chemical weathering rates?. Applied Geochemistry, 2011, 26, S346-S349.	1.4	13
114	The role of riverine particulate material on the global cycles of the elements. Applied Geochemistry, 2011, 26, S365-S369.	1.4	62
115	Do carbonate precipitates affect dissolution kinetics? 1: Basaltic glass. Chemical Geology, 2011, 284, 306-316.	1.4	74
116	Does variscite control phosphate availability in acidic natural waters? An experimental study of variscite dissolution rates. Geochimica Et Cosmochimica Acta, 2011, 75, 416-426.	1.6	14
117	Do organic ligands affect calcite dissolution rates?. Geochimica Et Cosmochimica Acta, 2011, 75, 1799-1813.	1.6	43
118	Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: Implications for mineral sequestration of carbon dioxide. Geochimica Et Cosmochimica Acta, 2011, 75, 5510-5525.	1.6	92
119	An experimental study of crystalline basalt dissolution from 2 \hat{a} ©½ pH \hat{a} ©½ 11 and temperatures from 5 to 75 μ Geochimica Et Cosmochimica Acta, 2011, 75, 5496-5509.	°C. 1.6	158
120	The direct precipitation of rhabdophane (REEPO4·nH2O) nano-rods from acidic aqueous solutions at 5–100°C. Journal of Nanoparticle Research, 2011, 13, 4049-4062.	0.8	38
121	Geochemistry and Behavior of Trace Elements During the Complete Evaporation of the Merouane Chott Ephemeral Lake: Southeast Algeria. Aquatic Geochemistry, 2011, 17, 51-70.	1.5	9
122	The effect of dissolved sulphate on calcite precipitation kinetics and consequences for subsurface CO2 storage. Energy Procedia, 2011, 4, 5037-5043.	1.8	19
123	The CarbFix Pilot Project–Storing carbon dioxide in basalt. Energy Procedia, 2011, 4, 5579-5585.	1.8	101
124	Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control, 2010, 4, 537-545.	2.3	294
125	Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces?. Geochimica Et Cosmochimica Acta, 2010, 74, 1329-1337.	1.6	47
126	An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200°C as a function of pH, total dissolved carbonate concentration, and chemical affinity. Geochimica Et Cosmochimica Acta, 2010, 74, 6344-6356.	1.6	37

#	Article	IF	CITATIONS
127	An experimental study of lake water-sediment interaction rates. Comptes Rendus - Geoscience, 2010, 342, 126-135.	0.4	6
128	The effect of aqueous sulphate on basaltic glass dissolution rates. Chemical Geology, 2010, 277, 345-354.	1.4	44
129	6. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. , 2009, , 207-258.		20
130	1. Thermodynamic Databases for Water-Rock Interaction. , 2009, , 1-46.		11
131	Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland. Energy Procedia, 2009, 1, 3641-3646.	1.8	99
132	Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters, 2009, 277, 213-222.	1.8	310
133	The surface chemistry of multi-oxide silicates. Geochimica Et Cosmochimica Acta, 2009, 73, 4617-4634.	1.6	110
134	Magnesite growth rates as a function of temperature and saturation state. Geochimica Et Cosmochimica Acta, 2009, 73, 5646-5657.	1.6	216
135	Chemical evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for CO2 sequestration in basaltic rocks. Applied Geochemistry, 2009, 24, 463-474.	1.4	87
136	Precipitation of Iron and Aluminum Phosphates Directly from Aqueous Solution as a Function of Temperature from 50 to 200 °C. Crystal Growth and Design, 2009, 9, 5197-5205.	1.4	55
137	Surface charge and zeta-potential of metabolically active and dead cyanobacteria. Journal of Colloid and Interface Science, 2008, 323, 317-325.	5.0	87
138	Carbon Dioxide Sequestration A Solution to a Global Problem. Elements, 2008, 4, 305-310.	0.5	198
139	Mineral Carbonation of CO2. Elements, 2008, 4, 333-337.	0.5	474
140	Mineral precipitation rates during the complete evaporation of the Merouane Chott ephemeral lake. Geochimica Et Cosmochimica Acta, 2008, 72, 1583-1597.	1.6	24
141	An experimental study of the dissolution mechanism and rates of muscovite. Geochimica Et Cosmochimica Acta, 2008, 72, 4948-4961.	1.6	119
142	Phosphate Mineral Reactivity and Global Sustainability. Elements, 2008, 4, 83-87.	0.5	138
143	Phosphates and Nuclear Waste Storage. Elements, 2008, 4, 113-116.	0.5	129
144	Macro- to nanoscale study of the effect of aqueous sulphate on calcite growth. Mineralogical Magazine, 2008, 72, 141-144.	0.6	2

#	Article	IF	CITATIONS
145	The feedback between climate and weathering. Mineralogical Magazine, 2008, 72, 317-320.	0.6	9
146	The effect of aqueous sulphate on basaltic glass dissolution rates. Mineralogical Magazine, 2008, 72, 39-41.	0.6	13
147	Phosphate mineral reactivity: from global cycles to sustainable development. Mineralogical Magazine, 2008, 72, 337-340.	0.6	29
148	Dissolution rates of crystalline basalt at pH 4 and 10 and 25-75°C. Mineralogical Magazine, 2008, 72, 155-158.	0.6	23
149	Variscite dissolution rates in aqueous solution: does variscite control the availability of phosphate in acidic natural waters?. Mineralogical Magazine, 2008, 72, 349-351.	0.6	4
150	Dissolution of diopside and basaltic glass: the effect of carbonate coating. Mineralogical Magazine, 2008, 72, 135-139.	0.6	36
151	An experimental study of dolomite dissolution rates at 80°C as a function of chemical affinity and solution composition. Chemical Geology, 2007, 242, 509-517.	1.4	45
152	The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50°C and pH from 1 to 6. Chemical Geology, 2007, 244, 554-568.	1.4	87
153	Dissolution rates of talc as a function of solution composition, pH and temperature. Geochimica Et Cosmochimica Acta, 2007, 71, 3446-3457.	1.6	62
154	Kinetics and mechanism of natural fluorapatite dissolution at 25°C and pH from 3 to 12. Geochimica Et Cosmochimica Acta, 2007, 71, 5901-5912.	1.6	149
155	Fluorapatite surface composition in aqueous solution deduced from potentiometric, electrokinetic, and solubility measurements, and spectroscopic observations. Geochimica Et Cosmochimica Acta, 2007, 71, 5888-5900.	1.6	55
156	An Experimental Investigation of the Effect ofBacillus megateriumon Apatite Dissolution. Geomicrobiology Journal, 2006, 23, 177-182.	1.0	39
157	The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochimica Et Cosmochimica Acta, 2006, 70, 858-870.	1.6	178
158	Retrieval and interpretation of precipitation rates generated from the composition of the Merouane Chott ephemeral lake. Journal of Geochemical Exploration, 2006, 88, 284-287.	1.5	9
159	Role of river-suspended material in the global carbon cycle. Geology, 2006, 34, 49.	2.0	103
160	An experimental study of the dissolution rates of Nd-britholite, an apatite-structured actinide-bearing waste storage host analogue. Journal of Nuclear Materials, 2006, 354, 14-27.	1.3	31
161	A Raman Spectrographic and Potentiometric Study of Aqueous Lithium and Potassium Acetate Complexation at Temperatures from 20 to 200 â~C. Journal of Solution Chemistry, 2005, 34, 881-898.	0.6	7
162	Can Dawsonite Permanently Trap CO2?. Environmental Science & amp; Technology, 2005, 39, 8281-8287.	4.6	123

#	Article	IF	CITATIONS
163	Do clay mineral dissolution rates reach steady state?. Geochimica Et Cosmochimica Acta, 2005, 69, 1997-2006.	1.6	90
164	How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution—CdCO3 precipitation. Geochimica Et Cosmochimica Acta, 2005, 69, 5459-5476.	1.6	109
165	Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chemical Geology, 2005, 216, 59-77.	1.4	144
166	Experimental studies of REE fractionation during water–mineral interactions: REE release rates during apatite dissolution from pH 2.8 to 9.2. Chemical Geology, 2005, 222, 168-182.	1.4	68
167	An Analysis of the Roles of Stress, Temperature, and pH in Chemical Compaction of Sandstones: Discussion. Journal of Sedimentary Research, 2004, 74, 447-449.	0.8	12
168	An experimental study of the effect of aqueous fluoride on quartz and alkali-feldspar dissolution rates. Chemical Geology, 2004, 205, 155-167.	1.4	47
169	Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area. Geochimica Et Cosmochimica Acta, 2004, 68, 805-817.	1.6	72
170	Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: implications for rare earth element mobility in crustal fluids. Geochimica Et Cosmochimica Acta, 2004, 68, 2207-2221.	1.6	130
171	The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25°C. Geochimica Et Cosmochimica Acta, 2004, 68, 4571-4582.	1.6	96
172	The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochimica Et Cosmochimica Acta, 2004, 68, 4843-4858.	1.6	321
173	An experimental study of illite dissolution kinetics as a function of ph from 1.4 to 12.4 and temperature from 5 to 50°C. Geochimica Et Cosmochimica Acta, 2003, 67, 3583-3594.	1.6	206
174	Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochimica Et Cosmochimica Acta, 2003, 67, 3817-3832.	1.6	390
175	The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 2002, 184, 37-48.	1.4	584
176	An experimental study of calcite dissolution rates at acidic conditions and 25 ŰC in the presence of NaPO3 and MgCl2. Chemical Geology, 2002, 190, 291-302.	1.4	64
177	An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 ŰC and pH from 1.5 to 10. Chemical Geology, 2002, 191, 73-87.	1.4	157
178	Geochemistry of crustal fluids: an Andalusian perspective. Chemical Geology, 2002, 190, 1-11.	1.4	4
179	An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochimica Et Cosmochimica Acta, 2001, 65, 1219-1231.	1.6	172
180	Are quartz dissolution rates proportional to B.E.T. surface areas?. Geochimica Et Cosmochimica Acta, 2001, 65, 1059-1070.	1.6	213

#	Article	IF	CITATIONS
181	The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25ŰC and pH = 3 and 11. Geochimica Et Cosmochimica Acta, 2001, 65, 3671-3681.	1.6	408
182	General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica Et Cosmochimica Acta, 2001, 65, 3703-3719.	1.6	430
183	Experimental determination of the complexation of strontium and cesium with acetate in high-temperature aqueous solutions. Geochimica Et Cosmochimica Acta, 2001, 65, 3955-3964.	1.6	12
184	On the interpretation of closed system mineral dissolution experiments: comment on "Mechanism of kaolinite dissolution at room temperature and pressure part II: kinetic study―by Huertas et al. (1999). Geochimica Et Cosmochimica Acta, 2001, 65, 4429-4432.	1.6	25
185	An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations. Chemical Geology, 2001, 175, 485-494.	1.4	166
186	Making diagenesis obey thermodynamics and kinetics: the case of quartz cementation in sandstones from offshore mid-Norway. Applied Geochemistry, 2000, 15, 295-309.	1.4	56
187	Antimony transport in hydrothermal solutions: an EXAFS study of antimony(V) complexation in alkaline sulfide and sulfide–chloride brines at temperatures from 25°C to 300°C at Psat. Chemical Geology, 2000, 167, 161-167.	1.4	42
188	Speciation of tin (Sn2+ and Sn4+) in aqueous Cl solutions from 25°C to 350°C: an in situ EXAFS study. Chemical Geology, 2000, 167, 169-176.	1.4	56
189	An experimental study of dolomite dissolution rates as a function of pH from â~'0.5 to 5 and temperature from 25 to 80°C. Chemical Geology, 1999, 157, 13-26.	1.4	123
190	Experimental study of kyanite dissolution rates as a function of chemical affinity and solution composition. Geochimica Et Cosmochimica Acta, 1999, 63, 785-797.	1.6	58
191	An experimental study of the reactive surface area of the Fontainebleau sandstone as a function of porosity, permeability, and fluid flow rate. Geochimica Et Cosmochimica Acta, 1999, 63, 3525-3534.	1.6	63
192	An EXAFS spectroscopic study of aqueous antimony(III)-chloride complexation at temperatures from 25 to 250°C. Chemical Geology, 1998, 151, 21-27.	1.4	37
193	Aqueous speciation of yttrium at temperatures from 25 to 340°C at Psat: an in situ EXAFS study. Chemical Geology, 1998, 151, 29-39.	1.4	47
194	Experimental determination of aqueous sodium-acetate dissociation constants at temperatures from 20 to 240°C. Chemical Geology, 1998, 151, 69-84.	1.4	36
195	An experimental study of calcite and limestone dissolution rates as a function of pH from â^'1 to 3 and temperature from 25 to 80°C. Chemical Geology, 1998, 151, 199-214.	1.4	197
196	Does organic acid adsorption affect alkali-feldspar dissolution rates?. Chemical Geology, 1998, 151, 235-245.	1.4	90
197	Geochemistry of crustal fluids: a Tyrolean perspective. Chemical Geology, 1998, 151, 1-9.	1.4	3
198	Kinetic and thermodynamic properties of moganite, a novel silica polymorph. Geochimica Et Cosmochimica Acta, 1997, 61, 1193-1204.	1.6	92

#	Article	IF	CITATIONS
199	The surface chemistry and structure of acid-leached albite: New insights on the dissolution mechanism of the alkali feldspars. Geochimica Et Cosmochimica Acta, 1997, 61, 3013-3018.	1.6	65
200	Experimental studies of halite dissolution kinetics, 1 The effect of saturation state and the presence of trace metals. Chemical Geology, 1997, 137, 201-219.	1.4	93
201	Experimental studies of halite dissolution kinetics: II. The effect of the presence of aqueous trace anions and K3Fe(CN)6. Chemical Geology, 1997, 143, 17-26.	1.4	16
202	Summary of the Apparent Standard Partial Molal Gibbs Free Energies of Formation of Aqueous Species, Minerals, and Gases at Pressures 1 to 5000 Bars and Temperatures 25 to 1000 °C. Journal of Physical and Chemical Reference Data, 1995, 24, 1401-1560.	1.9	100
203	Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis. Geochimica Et Cosmochimica Acta, 1995, 59, 5039-5053.	1.6	232
204	The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochimica Et Cosmochimica Acta, 1994, 58, 2011-2024.	1.6	433
205	Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9. Geochimica Et Cosmochimica Acta, 1994, 58, 4549-4560.	1.6	211
206	Calculation of dissociation constants and the relative stabilities of polynuclear clusters of 1:1 electrolytes in hydrothermal solutions at supercritical pressures and temperatures. Geochimica Et Cosmochimica Acta, 1993, 57, 2673-2697.	1.6	45
207	Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 ŰC and 5 kbar. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 803-826.	1.7	454
208	SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000ŰC. Computers and Geosciences, 1992, 18, 899-947.	2.0	2,224
209	Calculation of diffusion coefficients for aqueous organic species at temperatures from 0 to 350 °C. Geochimica Et Cosmochimica Acta, 1991, 55, 3515-3529.	1.6	53
210	Calculation of activity coefficients and degrees of formation of neutral ion pairs in supercritical electrolyte solutions. Geochimica Et Cosmochimica Acta, 1991, 55, 1235-1251.	1.6	113
211	Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions. Geochimica Et Cosmochimica Acta, 1990, 54, 727-738.	1.6	154
212	Calculation of the transport properties of aqueous species at pressures to 5 KB and temperatures to 1000�C. Journal of Solution Chemistry, 1989, 18, 601-640.	0.6	62
213	Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes. Chemical Geology, 1989, 78, 357-380.	1.4	109
214	Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Aqueous tracer diffusion coefficients of ions to 1000°C and 5 kb. Geochimica Et Cosmochimica Acta, 1988, 52, 63-85.	1.6	145
215	Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: dissociation constants for supercritical alkali metal halides at temperatures from 400 to 800.degree.C and pressures from 500 to 4000 bar. The Journal of Physical Chemistry, 1988, 92, 1631-1639.	2.9	58
216	Interdiffusion with multiple precipitation/dissolution reactions: Transient model and the steady-state limit. Geochimica Et Cosmochimica Acta, 1986, 50, 1951-1966.	1.6	44

0

#	Article	IF	CITATIONS
217	Impact of in-situ gas liberation for enhanced oil recovery and CO ₂ storage in liquid-rich shale reservoirs. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-21.	1.2	11

218 Water-CO2-rock interaction during carbon sequestration. , 0, , 325-344.