## Si Nian Char

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5152467/publications.pdf Version: 2024-02-01



**SI ΝΙΔΝ CHAD** 

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <i>OsSWEET11b</i> , a potential sixth leaf blight susceptibility gene involved in sugar<br>transportâ€dependent male fertility. New Phytologist, 2022, 234, 975-989.                                                | 7.3  | 18        |
| 2  | Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell, 2021, 56, 557-568.e6.                                                   | 7.0  | 129       |
| 3  | High-efficiency plastome base editing in rice with TAL cytosine deaminase. Molecular Plant, 2021, 14, 1412-1414.                                                                                                    | 8.3  | 30        |
| 4  | The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability. PLoS Genetics, 2021, 17, e1009830.                                                               | 3.5  | 10        |
| 5  | Genome editing in grass plants. ABIOTECH, 2020, 1, 41-57.                                                                                                                                                           | 3.9  | 11        |
| 6  | An <i>Agrobacterium</i> â€delivered <scp>CRISPR</scp> /Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnology Journal, 2020, 18, 319-321.                                                             | 8.3  | 40        |
| 7  | The maize heterotrimeric G protein β subunit controls shoot meristem development and immune<br>responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>1799-1805. | 7.1  | 77        |
| 8  | Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production. Plant Biotechnology Journal, 2020, 18, 1526-1536.                                                               | 8.3  | 35        |
| 9  | Differential activities of maize plant elicitor peptides as mediators of immune signaling and herbivore resistance. Plant Journal, 2020, 104, 1582-1602.                                                            | 5.7  | 21        |
| 10 | Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nature<br>Plants, 2020, 6, 1375-1388.                                                                                    | 9.3  | 52        |
| 11 | Use of CRISPR/Cas9 for Targeted Mutagenesis in Sorghum. Current Protocols in Plant Biology, 2020, 5, e20112.                                                                                                        | 2.8  | 10        |
| 12 | Diagnostic kit for rice blight resistance. Nature Biotechnology, 2019, 37, 1372-1379.                                                                                                                               | 17.5 | 92        |
| 13 | Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nature Plants, 2019, 5, 1043-1056.                                                                                             | 9.3  | 60        |
| 14 | CRISPR/Cas9 for Mutagenesis in Rice. Methods in Molecular Biology, 2019, 1864, 279-293.                                                                                                                             | 0.9  | 12        |
| 15 | Creating Large Chromosomal Deletions in Rice Using CRISPR/Cas9. Methods in Molecular Biology, 2019, 1917, 47-61.                                                                                                    | 0.9  | 17        |
| 16 | Impaired phloem loading in <i>zmsweet13a,b,c</i> sucrose transporter triple knockâ€out mutants in<br><i>Zea mays</i> . New Phytologist, 2018, 218, 594-603.                                                         | 7.3  | 127       |
| 17 | An <i>Agrobacterium</i> â€delivered <scp>CRISPR</scp> /Cas9 system for highâ€frequency targeted<br>mutagenesis in maize. Plant Biotechnology Journal, 2017, 15, 257-268.                                            | 8.3  | 300       |
| 18 | Heritable siteâ€specific mutagenesis using <scp>TALEN</scp> s in maize. Plant Biotechnology Journal, 2015, 13, 1002-1010.                                                                                           | 8.3  | 110       |