Robert Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5152434/publications.pdf

Version: 2024-02-01

304743 302126 1,607 51 22 39 h-index citations g-index papers 52 52 52 1117 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CO modelling of premixed head-on quenching flame in the context of Large-Eddy Simulation. International Journal of Heat and Fluid Flow, 2022, 93, 108895.	2.4	3
2	Ignition of dense, inhomogeneous fuel sprays at elevated pressures and temperatures. Fuel, 2022, 321, 123853.	6.4	3
3	Combustion Characteristics of a Reverse-Cross-Flow Combustor. Journal of the Energy Institute, 2022, , .	5. 3	2
4	A priori assessment of flame surface density modelling for large-eddy simulation of sound generation by turbulent premixed flames. Combustion and Flame, 2022, 241, 112143.	5.2	3
5	Reduced chemistry for sound generation by planar annihilation in premixed methane/hydrogen flames. Proceedings of the Combustion Institute, 2021, 38, 6125-6133.	3.9	3
6	Flash vaporization of propane in an optically accessible, directly injected engine. International Journal of Engine Research, 2021, 22, 685-696.	2.3	3
7	Analysis of Near-Wall CO due to Unsteady Flame-Cooling Air Interaction. Flow, Turbulence and Combustion, 2021, 107, 343-365.	2.6	2
8	Optimization of CO Turndown for an Axially Staged Gas Turbine Combustor. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	1.1	2
9	Turbulent flame-wall interactions for flames diluted by hot combustion products. Combustion and Flame, 2021, 230, 111432.	5. 2	14
10	A comparative study of flame-wall interaction and flame-cooling air interaction. International Journal of Heat and Fluid Flow, 2021, 92, 108888.	2.4	6
11	A Joint Electrical and Thermodynamic Approach to HVAC Load Control. IEEE Transactions on Smart Grid, 2020, 11, 15-25.	9.0	19
12	A multispectral, extinction-based diagnostic for drop sizing in optically dense diesel sprays. International Journal of Engine Research, 2020, 21, 15-25.	2.3	6
13	An investigation on the impact of small-scale models in gasoline direct injection sprays (ECN Spray G). International Journal of Engine Research, 2020, 21, 217-225.	2.3	16
14	Spectral Microscopy Imaging System for High-Resolution and High-Speed Imaging of Fuel Sprays. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	2
15	Flame-wall interaction of a forced laminar premixed propane flame: Flame dynamics and exhaust CO emissions. Proceedings of the Combustion Institute, 2019, 37, 5385-5392.	3.9	16
16	Unsteady flame–wall interaction: Impact on CO emission and wall heat flux. Combustion and Flame, 2019, 207, 406-416.	5.2	37
17	Customer Selection for Residential Demand Response with Thermostatically Controlled Loads. , 2019, , .		3
18	Exhaust CO emissions of a laminar premixed propane–air flame interacting with cold gas jets. Combustion and Flame, 2019, 210, 374-388.	5.2	9

#	Article	IF	CITATIONS
19	Head-on quenching of laminar premixed methane flames diluted with hot combustion products. Proceedings of the Combustion Institute, 2019, 37, 5095-5103.	3.9	23
20	Measurement of Sauter mean diameter in diesel sprays using a scattering–absorption measurement ratio technique. International Journal of Engine Research, 2019, 20, 6-17.	2.3	10
21	Influence of building envelopes, climates, and occupancy patterns on residential HVAC demand. Journal of Building Engineering, 2019, 22, 33-47.	3.4	47
22	Life cycle analysis (LCA) of low emission methanol and di-methyl ether (DME) derived from natural gas. Fuel, 2018, 220, 871-878.	6.4	46
23	On the phase and structural variability of directly injected propane at spark ignition engine conditions. Fuel, 2018, 222, 294-306.	6.4	27
24	Model Predictive Control of Residential Demand in Low Voltage Network using Ice Storage. , 2018, , .		5
25	The feasibility of cost-effective gas through network interconnectivity: Possibility or pipe dream?. Energy, 2018, 165, 1370-1379.	8.8	5
26	Solar Curtailment Requirements in Low Voltage Networks: Impact of Climate and Building Wall Types in Australia., 2018,,.		5
27	On the Fuel Spray Transition to Dense Fluid Mixing at Reciprocating Engine Conditions. Energy & Samp; Fuels, 2017, 31, 6445-6454.	5.1	27
28	Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames. Combustion and Flame, 2017, 183, 1-14.	5.2	42
29	Generalizing the behavior of flash-boiling, plume interaction and spray collapse for multi-hole, direct injection. Fuel, 2017, 200, 345-356.	6.4	72
30	Baseline methodologies for small scale residential demand response. , 2016, , .		27
31	Influence of steam dilution on the ignition of hydrogen, syngas and natural gas blends at elevated pressures. Combustion and Flame, 2015, 162, 1126-1135.	5.2	61
32	Simulations of Autoignition and Laminar Premixed Flames in Methane/Air Mixtures Diluted with Hot Products. Combustion Science and Technology, 2014, 186, 453-465.	2.3	40
33	Detailed Emissions Prediction for a Turbulent Swirling Nonpremixed Flame. Energy & Samp; Fuels, 2014, 28, 1470-1488.	5.1	17
34	Autoignition of monodisperse biodiesel and diesel sprays in turbulent flows. Experimental Thermal and Fluid Science, 2012, 43, 40-46.	2.7	8
35	Detailed Multi-dimensional Study of Pollutant Formation in a Methane Diffusion Flame. Energy & Samp; Fuels, 2012, 26, 1598-1611.	5.1	33
36	Lifted Diffusion Flame Stabilisation: Conditional Analysis of Multi-Parameter High-Repetition Rate Diagnostics at the Flame Base. Flow, Turbulence and Combustion, 2012, 88, 503-527.	2.6	22

#	Article	IF	Citations
37	Autoignition of Liquid Fuel Droplets in a Turbulent Cross-Flow of Air. , 2011, , .		1
38	New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics. Flow, Turbulence and Combustion, 2011, 86, 313-341.	2.6	67
39	Pixel-based characterisation of CMOS high-speed camera systems. Applied Physics B: Lasers and Optics, 2011, 103, 421-433.	2.2	56
40	Visualization of blow-off events in bluff-body stabilized turbulent premixed flames. Proceedings of the Combustion Institute, 2011, 33, 1559-1566.	3.9	81
41	Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Experiments in Fluids, 2010, 49, 853-863.	2.4	76
42	On the importance of temporal context in interpretation of flame discontinuities. Combustion and Flame, 2009, 156, 269-271.	5.2	58
43	High-speed mixture fraction imaging. Applied Physics B: Lasers and Optics, 2009, 96, 745-748.	2.2	44
44	Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-Argon jet diffusion flame at 1.5kHz repetition rate. Proceedings of the Combustion Institute, 2009, 32, 905-912.	3.9	70
45	Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. Proceedings of the Combustion Institute, 2009, 32, 2957-2964.	3.9	45
46	Heat release rate as represented by [OH] \tilde{A} — [CH ₂ O] and its role in autoignition. Combustion Theory and Modelling, 2009, 13, 645-670.	1.9	67
47	Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combustion and Flame, 2008, 155, 181-195.	5.2	137
48	A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combustion Theory and Modelling, 2007, 11, 351-376.	1.9	110
49	Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow. Combustion and Flame, 2007, 151, 495-511.	5.2	113
50	Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions. , 0, , .		12
51	The Direct Transition of Fuel Sprays to theDense-Fluid Mixing Regime in the Contextof Modern Compression Ignition Engines. , 0, , .		3