Stefano Boccaletti

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5152280/stefano-boccaletti-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

286 20,542 140 52 h-index g-index citations papers 6.92 308 4.8 23,754 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
286	Identifying symmetries and predicting cluster synchronization in complex networks. <i>Chaos, Solitons and Fractals,</i> 2022 , 155, 111703	9.3	O
285	Social physics. <i>Physics Reports</i> , 2022 , 948, 1-148	27.7	23
284	The synchronized dynamics of time-varying networks. <i>Physics Reports</i> , 2022 , 949, 1-63	27.7	14
283	Topological synchronization of chaotic systems Scientific Reports, 2022, 12, 2508	4.9	1
282	The Master Stability Function for Synchronization in Simplicial Complexes. <i>Understanding Complex Systems</i> , 2022 , 249-267	0.4	
281	Network Theory in Neuroscience 2022 , 2190-2206		
280	Growing scale-free simplices. <i>Communications Physics</i> , 2021 , 4,	5.4	10
279	Multilayer representation of collaboration networks with higher-order interactions. <i>Scientific Reports</i> , 2021 , 11, 5666	4.9	18
278	D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios. <i>Chaos, Solitons and Fractals</i> , 2021 , 146, 110888	9.3	14
277	Chimeras. <i>Physics Reports</i> , 2021 , 898, 1-114	27.7	47
276	Chunking Rhythmic Synchronization: Bellerophon States and Quantized Clusters of Globally Coupled Phase Oscillators. <i>Nonlinear Physical Science</i> , 2021 , 103-114	0.1	
275	Stability of synchronization in simplicial complexes. <i>Nature Communications</i> , 2021 , 12, 1255	17.4	30
274	Predicting transitions in cooperation levels from network connectivity. <i>New Journal of Physics</i> , 2021 , 23, 093040	2.9	1
273	Evolutionary games on simplicial complexes. <i>Chaos, Solitons and Fractals</i> , 2021 , 150, 111103	9.3	6
272	Collective dynamics of heterogeneously and nonlinearly coupled phase oscillators. <i>Physical Review Research</i> , 2021 , 3,	3.9	6
271	Contagion in simplicial complexes. <i>Chaos, Solitons and Fractals</i> , 2021 , 152, 111307	9.3	2
270	Controlling Symmetries and Clustered Dynamics of Complex Networks. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 8, 282-293	4.9	2

(2019-2021)

269	Contrarians Synchronize beyond the Limit of Pairwise Interactions <i>Physical Review Letters</i> , 2021 , 127, 258301	7.4	2	
268	Discontinuous Transitions and Rhythmic States in the D-Dimensional Kuramoto Model Induced by a Positive Feedback with the Global Order Parameter. <i>Physical Review Letters</i> , 2020 , 125, 194101	7.4	24	
267	The dynamics of cooperation in asymmetric sub-populations. <i>New Journal of Physics</i> , 2020 , 22, 083015	2.9	8	
266	A novel route to cyclic dominance in voluntary social dilemmas. <i>Journal of the Royal Society Interface</i> , 2020 , 17, 20190789	4.1	22	
265	Explosive synchronization in populations of cooperative and competitive oscillators. <i>Chaos, Solitons and Fractals</i> , 2020 , 132, 109589	9.3	16	
264	Synchronization of phase oscillators under asymmetric and bimodal distributions of natural frequencies. <i>Chaos, Solitons and Fractals</i> , 2020 , 136, 109777	9.3	2	
263	Diverse strategic identities induce dynamical states in evolutionary games. <i>Physical Review Research</i> , 2020 , 2,	3.9	6	
262	Double explosive transitions to synchronization and cooperation in intertwined dynamics and evolutionary games. <i>New Journal of Physics</i> , 2020 , 22, 123026	2.9	5	
261	Epidemic spreading under infection-reduced-recovery. <i>Chaos, Solitons and Fractals</i> , 2020 , 140, 110130	9.3	9	
260	Steering complex networks toward desired dynamics. <i>Scientific Reports</i> , 2020 , 10, 20744	4.9	1	
259	Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent networks. <i>Nonlinear Dynamics</i> , 2019 , 96, 49-56	5	31	
258	Self-organized interdependence among populations promotes cooperation by means of coevolution. <i>Chaos</i> , 2019 , 29, 013139	3.3	32	
257	Synchronization clusters emerge as the result of a global coupling among classical phase oscillators. <i>New Journal of Physics</i> , 2019 , 21, 053002	2.9	7	
256	Self-organized Cultured Neuronal Networks: Longitudinal Analysis and Modeling of the Underlying Network Structure. <i>SEMA SIMAI Springer Series</i> , 2019 , 59-85	0.2		
255	Synaptic modifications driven by spike-timing-dependent plasticity in weakly coupled bursting neurons. <i>Physical Review E</i> , 2019 , 99, 032419	2.4	1	
254	Synchronization in starlike networks of phase oscillators. <i>Physical Review E</i> , 2019 , 100, 012212	2.4	12	
253	Universal phase transitions to synchronization in Kuramoto-like models with heterogeneous coupling. <i>New Journal of Physics</i> , 2019 , 21, 113018	2.9	14	
252	Universal behavior of cascading failures in interdependent networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 22452-22457	11.5	32	

251	Characterizing nonstationary coherent states in globally coupled conformist and contrarian oscillators. <i>Physical Review E</i> , 2019 , 100, 052310	2.4	
250	Dynamic interdependence and competition in multilayer networks. <i>Nature Physics</i> , 2019 , 15, 178-185	16.2	43
249	Emergent explosive synchronization in adaptive complex networks. <i>Physical Review E</i> , 2018 , 97, 042301	2.4	26
248	Adaptive control of dynamical synchronization on evolving networks with noise disturbances. <i>Physical Review E</i> , 2018 , 97, 022211	2.4	8
247	Punishment diminishes the benefits of network reciprocity in social dilemma experiments. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 30-35	11.5	166
246	Multiple peaks patterns of epidemic spreading in multi-layer networks. <i>Chaos, Solitons and Fractals</i> , 2018 , 107, 135-142	9.3	9
245	Exploiting a cognitive bias promotes cooperation in social dilemma experiments. <i>Nature Communications</i> , 2018 , 9, 2954	17.4	115
244	Multiplex networks of musical artists: The effect of heterogeneous inter-layer links. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2018 , 510, 671-677	3.3	2
243	Relay synchronization in multiplex networks. <i>Scientific Reports</i> , 2018 , 8, 8629	4.9	41
242	Betweenness centrality in urban networks: revealing the transportation backbone of the country from the demographic data. <i>IOP Conference Series: Earth and Environmental Science</i> , 2018 , 177, 012017	0.3	3
241	Explosive synchronization in mono and multilayer networks. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2018 , 23, 1931-1944	1.3	3
240	Synchronization: From Coupled Systems to Complex Networks 2018 ,		92
239	Origin of Bellerophon states in globally coupled phase oscillators. <i>Physical Review E</i> , 2018 , 98,	2.4	18
238	Synchronization of chaotic systems: A microscopic description. <i>Physical Review E</i> , 2018 , 98,	2.4	8
237	Popularity enhances the interdependent network reciprocity. New Journal of Physics, 2018, 20, 123012	2.9	37
236	Rhythmic synchronization and hybrid collective states of globally coupled oscillators. <i>Scientific Reports</i> , 2018 , 8, 12950	4.9	3
235	Assortative mixing in spatially-extended networks. Scientific Reports, 2018, 8, 13825	4.9	2
234	Inter-layer competition in adaptive multiplex network. <i>New Journal of Physics</i> , 2018 , 20, 075004	2.9	12

233	Unveiling the multi-fractal structure of complex networks. <i>Chaos, Solitons and Fractals</i> , 2017 , 97, 11-14	9.3	18
232	Interplay of delay and multiplexing: Impact on cluster synchronization. <i>Chaos</i> , 2017 , 27, 043103	3.3	10
231	Statistical physics of human cooperation. <i>Physics Reports</i> , 2017 , 687, 1-51	27.7	725
230	Reconstructing multi-mode networks from multivariate time series. <i>Europhysics Letters</i> , 2017 , 119, 5000	08 .6	9
229	Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. <i>Physical Review E</i> , 2017 , 96, 012316	2.4	36
228	Inter-layer synchronization in non-identical multi-layer networks. Scientific Reports, 2017, 7, 45475	4.9	72
227	Interplay between geo-population factors and hierarchy of cities in multilayer urban networks. <i>Scientific Reports</i> , 2017 , 7, 17246	4.9	9
226	Connection adaption for control of networked mobile chaotic agents. <i>Scientific Reports</i> , 2017 , 7, 16069	4.9	5
225	Self-similarity in explosive synchronization of complex networks. <i>Physical Review E</i> , 2017 , 96, 062312	2.4	13
224	Inhomogeneity induces relay synchronization in complex networks. <i>Physical Review E</i> , 2016 , 93, 042203	2.4	20
223	Synchronization in slowly switching networks of coupled oscillators. <i>Scientific Reports</i> , 2016 , 6, 35979	4.9	14
222	Synchronization in networks with multiple interaction layers. <i>Science Advances</i> , 2016 , 2, e1601679	14.3	72
221	Coexistence of Quantized, Time Dependent, Clusters in Globally Coupled Oscillators. <i>Physical Review Letters</i> , 2016 , 117, 204101	7.4	49
220	Explosive transitions in complex networks tructure and dynamics: Percolation and synchronization. <i>Physics Reports</i> , 2016 , 660, 1-94	27.7	165
219	Corporate Strategy on GMOs under Alternative Futures: The Case of a Large Food Retailer in Italy. <i>EuroChoices</i> , 2016 , 15, 52-58	2	2
218	Concurrent enhancement of percolation and synchronization in adaptive networks. <i>Scientific Reports</i> , 2016 , 6, 27111	4.9	10
217	Experimental implementation of maximally synchronizable networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 448, 113-121	3.3	4
216	Emergence of a multilayer structure in adaptive networks of phase oscillators. <i>Chaos, Solitons and Fractals,</i> 2016 , 84, 23-30	9.3	14

215	Synchronization and Bellerophon states in conformist and contrarian oscillators. <i>Scientific Reports</i> , 2016 , 6, 36713	4.9	26
214	Impacts of non-GMO standards on poultry supply chain governance: transaction cost approach vs resource-based view. <i>Supply Chain Management</i> , 2016 , 21, 743-758	10	13
213	Explosive synchronization coexists with classical synchronization in the Kuramoto model. <i>Chaos</i> , 2016 , 26, 065307	3.3	20
212	Inter-layer synchronization in multiplex networks of identical layers. <i>Chaos</i> , 2016 , 26, 065304	3.3	61
211	Topological stability criteria for networking dynamical systems with Hermitian Jacobian. <i>European Journal of Applied Mathematics</i> , 2016 , 27, 888-903	1	2
210	Introduction to Focus Issue: Complex Dynamics in Networks, Multilayered Structures and Systems. <i>Chaos</i> , 2016 , 26, 065101	3.3	3
209	Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks. <i>Scientific Reports</i> , 2016 , 6, 21297	4.9	13
208	Combining complex networks and data mining: Why and how. <i>Physics Reports</i> , 2016 , 635, 1-44	27.7	105
207	Observability coefficients for predicting the class of synchronizability from the algebraic structure of the local oscillators. <i>Physical Review E</i> , 2016 , 94, 042205	2.4	19
206	Explosive synchronization in adaptive and multilayer networks. <i>Physical Review Letters</i> , 2015 , 114, 038	70 / 14	213
205	Anomalous consistency in Mild Cognitive Impairment: A complex networks approach. <i>Chaos, Solitons and Fractals,</i> 2015 , 70, 144-155	9.3	4
204	Emergent hybrid synchronization in coupled chaotic systems. <i>Physical Review E</i> , 2015 , 91, 022920	2.4	7
203	Effects of degree correlations on the explosive synchronization of scale-free networks. <i>Physical Review E</i> , 2015 , 91, 032811	2.4	25
202	Functional Hubs in Mild Cognitive Impairment. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2015 , 25, 1550034	2	10
201	Synchronization of intermittent behavior in ensembles of multistable dynamical systems. <i>Physical Review E</i> , 2015 , 91, 032902	2.4	23
200	Experimental evidence of explosive synchronization in mercury beating-heart oscillators. <i>Physical Review E</i> , 2015 , 91, 062909	2.4	34
199	Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2015 , 87, 513-23	4.6	8
198	Editorial on Multiplex networks: Structure, dynamics and applications (Chaos, Solitons and Fractals, 2015, 72, 1-3)	9.3	4

197	Networks of networks [An introduction. Chaos, Solitons and Fractals, 2015, 80, 1-6	9.3	103
196	Landau damping effects in the synchronization of conformist and contrarian oscillators. <i>Scientific Reports</i> , 2015 , 5, 18235	4.9	5
195	Enhancing the stability of the synchronization of multivariable coupled oscillators. <i>Physical Review E</i> , 2015 , 92, 032804	2.4	17
194	Synchronization in dynamical networks with unconstrained structure switching. <i>Physical Review E</i> , 2015 , 92, 062819	2.4	11
193	Effective centrality and explosive synchronization in complex networks. <i>Physical Review E</i> , 2015 , 92, 06	52 <u>8</u> 2 ₁ 0	12
192	Governance implications of non-GM private standards on poultry meat value chains. <i>British Food Journal</i> , 2015 , 117, 2564-2581	2.8	11
191	Explosive synchronization as a process of explosive percolation in dynamical phase space. <i>Scientific Reports</i> , 2014 , 4, 5200	4.9	50
190	Exact solution for first-order synchronization transition in a generalized Kuramoto model. <i>Scientific Reports</i> , 2014 , 4, 7262	4.9	49
189	Functional brain networks: great expectations, hard times and the big leap forward. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	54
188	Complex network theory and the brain. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	84
187	The structure and dynamics of multilayer networks. <i>Physics Reports</i> , 2014 , 544, 1-122	27.7	1892
186	Hysteretic transitions in the Kuramoto model with inertia. <i>Physical Review E</i> , 2014 , 90, 042905	2.4	79
185	Emergence of disassortative mixing from pruning nodes in growing scale-free networks. <i>Scientific Reports</i> , 2014 , 4, 7536	4.9	12
184	Parenclitic networks: uncovering new functions in biological data. <i>Scientific Reports</i> , 2014 , 4, 5112	4.9	15
183	Emergence of small-world anatomical networks in self-organizing clustered neuronal cultures. <i>PLoS ONE</i> , 2014 , 9, e85828	3.7	24
182	Collective stochastic coherence and synchronizability in weighted scale-free networks. <i>New Journal of Physics</i> , 2014 , 16, 013036	2.9	9
181	Analysis of Complex Data by Means of Complex Networks. <i>IFIP Advances in Information and Communication Technology</i> , 2014 , 39-46	0.5	2
180	Eigenvector centrality of nodes in multiplex networks. <i>Chaos</i> , 2013 , 23, 033131	3.3	149

179	Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures. <i>European Physical Journal: Special Topics</i> , 2013 , 215, 23-33	2.3	182
178	Explosive transitions to synchronization in networks of phase oscillators. <i>Scientific Reports</i> , 2013 , 3, 12	814.9	80
177	Computing with complex-valued networks of phase oscillators. <i>Europhysics Letters</i> , 2013 , 102, 40007	1.6	O
176	Explosive synchronization in weighted complex networks. <i>Physical Review E</i> , 2013 , 88, 042808	2.4	67
175	Emergence of network features from multiplexity. Scientific Reports, 2013, 3, 1344	4.9	314
174	Generalized synchronization in relay systems with instantaneous coupling. <i>Physical Review E</i> , 2013 , 88, 052908	2.4	27
173	Feature selection in the reconstruction of complex network representations of spectral data. <i>PLoS ONE</i> , 2013 , 8, e72045	3.7	8
172	Knowledge discovery in spectral data by means of complex networks. <i>Metabolites</i> , 2013 , 3, 155-67	5.6	6
171	Topological measure locating the effective crossover between segregation and integration in a modular network. <i>Physical Review Letters</i> , 2012 , 108, 228701	7.4	26
170	Generalized synchronization in mutually coupled oscillators and complex networks. <i>Physical Review E</i> , 2012 , 86, 036216	2.4	44
169	Targeting the dynamics of complex networks. <i>Scientific Reports</i> , 2012 , 2, 396	4.9	35
168	Optimizing functional network representation of multivariate time series. <i>Scientific Reports</i> , 2012 , 2, 630	4.9	59
167	Assortative and modular networks are shaped by adaptive synchronization processes. <i>Physical Review E</i> , 2012 , 86, 015101	2.4	19
166	Graphical notation reveals topological stability criteria for collective dynamics in complex networks. <i>Physical Review Letters</i> , 2012 , 108, 194102	7.4	16
165	Explosive first-order transition to synchrony in networked chaotic oscillators. <i>Physical Review Letters</i> , 2012 , 108, 168702	7.4	126
164	NONLOCAL ANALYSIS OF MODULAR ROLES. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2012 , 22, 1250167	2	
163	Functional Brain Networks: beyond the small-world paradigm*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 57-62		3
162	Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. <i>Networks and Heterogeneous Media</i> , 2012 , 7, 473-481	1.6	6

(2010-2011)

16:	Principles of recovery from traumatic brain injury: reorganization of functional networks. NeuroImage, 2011 , 55, 1189-99	7.9	63	
160	Analyses of antigen dependency networks unveil immune system reorganization between birth and adulthood. <i>Chaos</i> , 2011 , 21, 016109	3.3	25	
159	Reduced synchronization persistence in neural networks derived from atm-deficient mice. <i>Frontiers</i> in Neuroscience, 2011 , 5, 46	5.1	11	
158	8 Unveiling protein functions through the dynamics of the interaction network. <i>PLoS ONE</i> , 2011 , 6, e176	79 _{3.7}	14	
157	Node vulnerability under finite perturbations in complex networks. <i>PLoS ONE</i> , 2011 , 6, e20236	3.7	7	
156	6 Experimental observations of synchronization interfaces in networks of oscillators 2011 ,		2	
155	Emergence of structural patterns out of synchronization in networks with competitive interactions. Scientific Reports, 2011 , 1, 99	4.9	55	
154	Emerging meso- and macroscales from synchronization of adaptive networks. <i>Physical Review Letters</i> , 2011 , 107, 234103	7.4	47	
153	Complex networks analysis of obstructive nephropathy data. <i>Chaos</i> , 2011 , 21, 033103	3.3	14	
152	2 Synchronization waves in geometric networks. <i>Physical Review E</i> , 2011 , 84, 065101	2.4	9	
151	Computation as an emergent feature of adaptive synchronization. <i>Physical Review E</i> , 2011 , 84, 060102	2.4	5	
150	Computation emerges from adaptive synchronization of networking neurons. <i>PLoS ONE</i> , 2011 , 6, e264	63. ₇	14	
149	9 Reorganization of functional networks in mild cognitive impairment. <i>PLoS ONE</i> , 2011 , 6, e19584	3.7	100	
148	NETWORKS OF SPRINGS: A PRACTICAL APPROACH. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010 , 20, 937-942	2	6	
147	INTERACTING OSCILLATORS IN COMPLEX NETWORKS: SYNCHRONIZATION AND THE EMERGENCE OF SCALE-FREE TOPOLOGIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010 , 20, 753-763	2	4	
140	6 ENTRAINMENT COMPETITION IN COMPLEX NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010 , 20, 827-833	2		
145	5 Dynamics of overlapping structures in modular networks. <i>Physical Review E</i> , 2010 , 82, 016115	2.4	28	
144	Functional neural networks underlying semantic encoding of associative memories. <i>NeuroImage</i> , 2010 , 50, 1258-70	7.9	28	

143	Real-time estimation of interaction delays. <i>Physical Review E</i> , 2009 , 80, 036203	2.4	14
142	Regulating synchronous states of complex networks by pinning interaction with an external node. <i>Physical Review E</i> , 2009 , 80, 066111	2.4	4
141	Entraining the topology and the dynamics of a network of phase oscillators. <i>Physical Review E</i> , 2009 , 79, 046105	2.4	5
140	VULNERABILITY AND FALL OF EFFICIENCY IN COMPLEX NETWORKS: A NEW APPROACH WITH COMPUTATIONAL ADVANTAGES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009 , 19, 727-735	2	6
139	Generation of scale-free topology in complex networks by phase entrainment. <i>International Journal of Systems Science</i> , 2009 , 40, 923-930	2.3	
138	The formation of synchronization cliques during the development of modular neural networks. <i>Physical Biology</i> , 2009 , 6, 036018	3	28
137	Experimental approach to the study of complex network synchronization using a single oscillator. <i>Physical Review E</i> , 2009 , 79, 055202	2.4	14
136	Synchronization interfaces and overlapping communities in complex networks. <i>Physical Review Letters</i> , 2008 , 101, 168701	7.4	86
135	The Synchronized Dynamics of Complex Systems. <i>Monograph Series on Nonlinear Science and Complexity</i> , 2008 , 1-239		59
134	SYNCHRONIZATION IN NETWORKS OF SLIGHTLY NONIDENTICAL ELEMENTS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2008 , 18, 845-850	2	15
133	Synchronization in networks of spatially extended systems. <i>Chaos</i> , 2008 , 18, 023133	3.3	16
132	Synchronization of moving chaotic agents. <i>Physical Review Letters</i> , 2008 , 100, 044102	7.4	132
131	Disorder and decision cost in spatial networks. <i>Chaos</i> , 2008 , 18, 023103	3.3	9
130	Attractor selection in a modulated laser and in the Lorenz circuit. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2008 , 366, 475-86	3	5
129	Pinning control of spatio temporal chaos in nonlinear optics. <i>Journal of Physics: Conference Series</i> , 2008 , 134, 012051	0.3	
128	Phase locking induces scale-free topologies in networks of coupled oscillators. <i>PLoS ONE</i> , 2008 , 3, e264	4 3.7	29
127	Detecting complex network modularity by dynamical clustering. <i>Physical Review E</i> , 2007 , 75, 045102	2.4	149
126	The complex network of musical tastes. <i>New Journal of Physics</i> , 2007 , 9, 172-172	2.9	16

125	Awaking and sleeping of a complex network. <i>Neural Networks</i> , 2007 , 20, 102-8	9.1	6
124	Active control of the synchronization manifold in a ring of mutually coupled oscillators. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2007 , 371, 48-57	2.3	8
123	The birth of defects in pattern formation: Testing of the Kibble durek mechanism. <i>European Physical Journal: Special Topics</i> , 2007 , 146, 87-98	2.3	14
122	Synchronization processes in complex networks. <i>European Physical Journal: Special Topics</i> , 2007 , 146, 129-144	2.3	11
121	COHERENCE RESONANCE IN A FITZHUGHNAGUMO ELECTRONIC SYSTEM. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2007 , 17, 3431-3436	2	
120	GROWING HIERARCHICAL SCALE-FREE NETWORKS BY MEANS OF NONHIERARCHICAL PROCESSES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007 , 17, 2447-2452	2	12
119	Synchronization properties of network motifs. Europhysics Letters, 2007, 78, 28001	1.6	40
118	Identification of network modules by optimization of ratio association. <i>Chaos</i> , 2007 , 17, 023114	3.3	44
117	Multiscale vulnerability of complex networks. <i>Chaos</i> , 2007 , 17, 043110	3.3	53
116	Chaos suppression through asymmetric coupling. <i>Chaos</i> , 2007 , 17, 043107	3.3	22
115	Automatic control and tracking of periodic orbits in chaotic systems. <i>Physical Review E</i> , 2007 , 75, 06621	12.4	2
114	Detecting and localizing the foci in human epileptic seizures. <i>Chaos</i> , 2007 , 17, 043113	3.3	15
113	Length distribution of laminar phases for type-I intermittency in the presence of noise. <i>Physical Review E</i> , 2007 , 76, 026206	2.4	27
112	Synchronization in Coupled and Free Chaotic Systems 2007 , 181-198		
111	Pinning control of spatiotemporal chaos in the LCLV device. <i>Mathematical Biosciences and Engineering</i> , 2007 , 4, 523-30	2.1	2
110	Synchronization in weighted scale-free networks with degreedegree correlation. <i>Physica D: Nonlinear Phenomena</i> , 2006 , 224, 123-129	3.3	61
109	Dynamical network model of infective mobile agents. <i>Physical Review E</i> , 2006 , 74, 036110	2.4	64
108	Synchronization of spontaneous bursting in a CO2 laser. <i>Physical Review E</i> , 2006 , 74, 066207	2.4	10

107	Introduction: stability and pattern formation in networks of dynamical systems. <i>Chaos</i> , 2006 , 16, 01510	13.3	9
106	Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. <i>Physical Review Letters</i> , 2006 , 97, 114101	7.4	61
105	Degree mixing and the enhancement of synchronization in complex weighted networks. <i>Physical Review E</i> , 2006 , 74, 066107	2.4	30
104	Experimental synchronization of spatiotemporal chaos in nonlinear optics. <i>Physical Review E</i> , 2006 , 73, 036213	2.4	1
103	Synchronizing weighted complex networks. <i>Chaos</i> , 2006 , 16, 015106	3.3	44
102	Synchronization of chaotic systems with coexisting attractors. <i>Physical Review Letters</i> , 2006 , 96, 244102	7.4	79
101	Synchronization in dynamical networks: evolution along commutative graphs. <i>Physical Review E</i> , 2006 , 74, 016102	2.4	74
100	Controlling spatio-temporal chaos in the scenario of the one-dimensional complex Ginzburg-Landau equation. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2006 , 364, 2383-95	3	11
99	Opinion dynamics and synchronization in a network of scientific collaborations. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 372, 316-325	3.3	39
98	Complex networks: Structure and dynamics. <i>Physics Reports</i> , 2006 , 424, 175-308	27.7	6980
98 97	Complex networks: Structure and dynamics. <i>Physics Reports</i> , 2006 , 424, 175-308 Stability of the synchronous state of an arbitrary network of coupled elements. <i>Radiophysics and Quantum Electronics</i> , 2006 , 49, 826-833	27.7	6980
	Stability of the synchronous state of an arbitrary network of coupled elements. <i>Radiophysics and</i>	0.7	
97	Stability of the synchronous state of an arbitrary network of coupled elements. <i>Radiophysics and Quantum Electronics</i> , 2006 , 49, 826-833 On the intrinsic time scales involved in synchronization: a data-driven approach. <i>Chaos</i> , 2005 , 15, 23904	0.7	1
97 96	Stability of the synchronous state of an arbitrary network of coupled elements. <i>Radiophysics and Quantum Electronics</i> , 2006 , 49, 826-833 On the intrinsic time scales involved in synchronization: a data-driven approach. <i>Chaos</i> , 2005 , 15, 23904	0.7	1 22
97 96 95	Stability of the synchronous state of an arbitrary network of coupled elements. <i>Radiophysics and Quantum Electronics</i> , 2006 , 49, 826-833 On the intrinsic time scales involved in synchronization: a data-driven approach. <i>Chaos</i> , 2005 , 15, 23904 Synchronization is enhanced in weighted complex networks. <i>Physical Review Letters</i> , 2005 , 94, 218701 Localized structures in an optical feedback interferometer: properties and interactions. <i>Applied</i>	0.7 3·3 7·4	1 22 377
97 96 95 94	Stability of the synchronous state of an arbitrary network of coupled elements. <i>Radiophysics and Quantum Electronics</i> , 2006 , 49, 826-833 On the intrinsic time scales involved in synchronization: a data-driven approach. <i>Chaos</i> , 2005 , 15, 23904 Synchronization is enhanced in weighted complex networks. <i>Physical Review Letters</i> , 2005 , 94, 218701 Localized structures in an optical feedback interferometer: properties and interactions. <i>Applied Physics B: Lasers and Optics</i> , 2005 , 81, 921-926 Synchronization of spatially extended chaotic systems with asymmetric coupling. <i>Brazilian Journal</i>	0.7 3·3 7·4	1 22 377 1
97 96 95 94 93	Stability of the synchronous state of an arbitrary network of coupled elements. <i>Radiophysics and Quantum Electronics</i> , 2006 , 49, 826-833 On the intrinsic time scales involved in synchronization: a data-driven approach. <i>Chaos</i> , 2005 , 15, 23904 Synchronization is enhanced in weighted complex networks. <i>Physical Review Letters</i> , 2005 , 94, 218701 Localized structures in an optical feedback interferometer: properties and interactions. <i>Applied Physics B: Lasers and Optics</i> , 2005 , 81, 921-926 Synchronization of spatially extended chaotic systems with asymmetric coupling. <i>Brazilian Journal of Physics</i> , 2005 , 35, 411	0.7 3.3 7.4 1.9	1 22 377 1

(2003-2005)

89	Coherence resonance in excitable electronic circuits in the presence of colored noise. <i>Physical Review E</i> , 2005 , 71, 062101	2.4	7
88	Synchronization in complex networks with age ordering. <i>Physical Review Letters</i> , 2005 , 94, 138701	7.4	150
87	ANOMALOUS SYNCHRONIZATION OF SPATIALLY EXTENDED CHAOTIC SYSTEMS IN THE PRESENCE OF ASYMMETRIC COUPLING. <i>Fluctuation and Noise Letters</i> , 2005 , 05, L251-L258	1.2	
86	Thresholds for epidemic outbreaks in finite scale-free networks. <i>Mathematical Biosciences and Engineering</i> , 2005 , 2, 317-27	2.1	17
85	Synchronization of spatially extended chaotic systems in the presence of asymmetric coupling. <i>Physical Review E</i> , 2004 , 70, 036219	2.4	16
84	Experimental control of coherence of a chaotic oscillator. <i>Physical Review E</i> , 2004 , 69, 066211	2.4	11
83	Predicting phase synchronization in a spiking chaotic CO2 laser. <i>Physical Review E</i> , 2004 , 70, 035204	2.4	7
82	Experimental targeting and control of spatiotemporal chaos in nonlinear optics. <i>Physical Review Letters</i> , 2004 , 93, 063902	7.4	15
81	Irrational phase synchronization. <i>Physical Review E</i> , 2004 , 69, 056228	2.4	11
80	Detecting local synchronization in coupled chaotic systems. <i>Physical Review E</i> , 2004 , 69, 036201	2.4	5
79	Frequency entrainment of nonautonomous chaotic oscillators. <i>Physical Review E</i> , 2004 , 69, 016208	2.4	10
78	Convective instabilities of synchronization manifolds in spatially extended systems. <i>Physical Review E</i> , 2004 , 69, 047202	2.4	22
77	In phase and antiphase synchronization of coupled homoclinic chaotic oscillators. <i>Chaos</i> , 2004 , 14, 118-2	23.3	12
76	SYMMETRY INDUCED HETEROCLINIC CYCLES IN A CO2 LASER. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2004 , 14, 1121-1127	2	1
75	Chaotic spreading of epidemics in complex networks of excitable units. <i>Mathematical Biosciences and Engineering</i> , 2004 , 1, 49-55	2.1	6
74	Controlling transient dynamics to communicate with homoclinic chaos. <i>Chaos</i> , 2003 , 13, 921-5	3.3	4
73	Information encoding in homoclinic chaotic systems. <i>Chaos</i> , 2003 , 13, 286-90	3.3	16
72	Introduction: Control and synchronization in chaotic dynamical systems. <i>Chaos</i> , 2003 , 13, 126-7	3.3	55

71	Competition of synchronization domains in arrays of chaotic homoclinic systems. <i>Physical Review E</i> , 2003 , 68, 066209	2.4	23
70	Control of localized structures in an optical feedback interferometer. <i>Chaos</i> , 2003 , 13, 335-41	3.3	10
69	Asymmetric coupling effects in the synchronization of spatially extended chaotic systems. <i>Physical Review Letters</i> , 2003 , 91, 064103	7.4	29
68	Noise-enhanced synchronization of homoclinic chaos in a CO2 laser. <i>Physical Review E</i> , 2003 , 67, 015205	5 2.4	46
67	Constructive effects of noise in homoclinic chaotic systems. <i>Physical Review E</i> , 2003 , 67, 066220	2.4	49
66	The synchronization of chaotic systems. <i>Physics Reports</i> , 2002 , 366, 1-101	27.7	1934
65	Tailoring the profile and interactions of optical localized structures. <i>Physical Review E</i> , 2002 , 65, 066204	1 2.4	39
64	Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems. <i>Physical Review Letters</i> , 2002 , 89, 194101	7.4	72
63	Reconstructing embedding spaces of coupled dynamical systems from multivariate data. <i>Physical Review E</i> , 2002 , 65, 035204	2.4	44
62	Collective phase locked states in a chain of coupled chaotic oscillators. <i>Physical Review E</i> , 2002 , 65, 0557	2 6 8 ₄	9
61	Sistemas complejos en medicina y gestifi de organizaciones. <i>Revista De Calidad Asistencial: līgano De La Sociedad Espal</i> ola <i>De Calidad Asistencial</i> , 2002 , 17, 429		
60	DEFECT DYNAMICS DURING A QUENCH IN A BNARDMARANGONI CONVECTION SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2887-2894	2	6
59	INTERMITTENT LAG SYNCHRONIZATION IN A PAIR OF COUPLED CHAOTIC OSCILLATORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2699-2704	2	5
58	SIGNAL DROPOUT RECONSTRUCTION IN COMMUNICATING WITH CHAOS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2001 , 11, 2621-2629	2	
57	CONTROL AND SYNCHRONIZATION OF SPACE EXTENDED DYNAMICAL SYSTEMS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2001 , 11, 2715-2729	2	10
56	Topological defects after a quench in a BBard-Marangoni convection system. <i>Physical Review E</i> , 2001 , 63, 057301	2.4	32
55	Unifying framework for synchronization of coupled dynamical systems. <i>Physical Review E</i> , 2001 , 63, 066	2:1.9	97
54	PATTERN FORMATION AND DYNAMICS IN AN ANNULAR CO2 LASER. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2001 , 11, 2759-2770	2	

53	EFFECT OF A VARIABLE DELAY IN DELAYED DYNAMICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001 , 11, 2875-2880	2	14
52	The control of chaos: theory and applications. <i>Physics Reports</i> , 2000 , 329, 103-197	27.7	614
51	Pattern dynamics in an annular laser. European Physical Journal D, 2000, 12, 329-337	1.3	
50	THE LIQUID CRYSTAL LIGHT VALVE WITH OPTICAL FEEDBACK: A CASE STUDY IN PATTERN FORMATION. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2000 , 09, 183-204	0.8	21
49	Localized versus delocalized patterns in a nonlinear optical interferometer. <i>Journal of Optics B:</i> Quantum and Semiclassical Optics, 2000 , 2, 399-405		52
48	Experimental phase synchronization of a chaotic convective flow. <i>Physical Review Letters</i> , 2000 , 85, 556	57 7 74ρ	48
47	Synchronization of chaotic structurally nonequivalent systems. <i>Physical Review E</i> , 2000 , 61, 3712-5	2.4	49
46	Domain segregation in a two-dimensional system in the presence of drift. <i>Physical Review E</i> , 2000 , 61, R6045-8	2.4	5
45	Characterization of intermittent lag synchronization. <i>Physical Review E</i> , 2000 , 62, 7497-500	2.4	136
44	Integral behavior for localized synchronization in nonidentical extended systems. <i>Physical Review E</i> , 2000 , 62, 6346-51	2.4	15
43	CHARACTERIZATION OF SYNCHRONIZED SPATIOTEMPORAL STATES IN COUPLED NONIDENTICAL COMPLEX GINZBURGEANDAU EQUATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 2381-2389	2	14
42	PHASE CLUSTERING AND COLLECTIVE BEHAVIORS IN GLOBALLY COUPLED MAP LATTICES DUE TO MEAN FIELD EFFECTS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2000 , 10, 829-833	2	6
41	Chaos in the Brain: A New Strategy to Discriminate Deterministic Low Dimensional Dynamics in the Spontaneous Activity of the Human Cortex 2000 , 963-966		
40	Synchronization in Nonidentical Extended Systems. <i>Physical Review Letters</i> , 1999 , 83, 536-539	7.4	86
39	TRANSPORT INDUCED PATTERN SELECTION IN A NONLINEAR OPTICAL SYSTEM. <i>Journal of Nonlinear Optical Physics and Materials</i> , 1999 , 08, 235-252	0.8	2
38	Pattern formation and competition in nonlinear optics. <i>Physics Reports</i> , 1999 , 318, 1-83	27.7	239
37	Investigating the fractal properties of geological fault systems: The Main Ethiopian Rift Case. <i>Geophysical Research Letters</i> , 1999 , 26, 1633-1636	4.9	13
36	Controlling and synchronizing space time chaos. <i>Physical Review E</i> , 1999 , 59, 6574-8	2.4	45

35	Discrimination of deterministic dynamics in the spontaneous activity of the human brain cortex. <i>Europhysics Letters</i> , 1998 , 42, 247-252	1.6	2
34	Weak Synchronization of Chaotic Coupled Map Lattices. <i>Physical Review Letters</i> , 1998 , 81, 3639-3642	7.4	34
33	Control of Amplitude Turbulence in Delayed Dynamical Systems. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1998 , 08, 1843-1848	2	11
32	The Control of Chaos: Theoretical Schemes and Experimental Realizations. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1998 , 08, 1643-1655	2	52
31	Pattern and Vortex Dynamics in Photorefractive Oscillators. Springer Series in Synergetics, 1998, 161-21	6 0.4	
30	Excitability following an avalanche-collapse process. <i>Europhysics Letters</i> , 1997 , 38, 85-90	1.6	45
29	Control of Defects and Spacelike Structures in Delayed Dynamical Systems. <i>Physical Review Letters</i> , 1997 , 79, 5246-5249	7.4	52
28	Adaptive targeting of chaos. <i>Physical Review E</i> , 1997 , 55, R4845-R4848	2.4	14
27	Adaptive recognition and filtering of noise using wavelets. <i>Physical Review E</i> , 1997 , 55, 5393-5397	2.4	13
26	Adaptive synchronization of chaos for secure communication. <i>Physical Review E</i> , 1997 , 55, 4979-4981	2.4	65
25	Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos. <i>Chaos</i> , 1997 , 7, 621-634	3.3	14
24	Pattern dynamics in a large Fresnel number laser close to threshold. <i>Physical Review A</i> , 1997 , 56, 2237-7	2246	6
23	Adaptive strategies for recognition, control and synchronization of chaos. <i>Chaos, Solitons and Fractals</i> , 1997 , 8, 1431-1448	9.3	19
22	Transport induced patterns in an optical system with focussing nonlinearity. <i>Optics Communications</i> , 1997 , 136, 267-272	2	7
21	SUPEREXCITABILITY INDUCED SPIRAL BREAKUP IN EXCITABLE SYSTEMS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1996 , 06, 1753-1759	2	6
20	Competition and coexistence of two-dimensional optical patterns. <i>Physica Scripta</i> , 1996 , T67, 7-11	2.6	
19	Adaptive recognition and control of chaos. <i>Physica D: Nonlinear Phenomena</i> , 1996 , 96, 9-16	3.3	12
18	Quantum-classical comparison in chaotic systems. <i>Physical Review E</i> , 1996 , 53, 4447-4450	2.4	5

LIST OF PUBLICATIONS

17	Optical pattern selection by a lateral wave-front shift. <i>Physical Review A</i> , 1996 , 54, 3472-3475	2.6	24
16	Domain coexistence in two-dimensional optical patterns. <i>Physical Review Letters</i> , 1996 , 76, 1063-1066	7.4	33
15	Optical morphogenesis: Dynamics of patterns in passive optical systems 1996 , 473-489		
14	Adaptive Control of Chaos. <i>Europhysics Letters</i> , 1995 , 31, 127-132	1.6	47
13	Pattern and Vortex Dynamics in Photorefractive Oscillators. <i>Springer Series in Synergetics</i> , 1995 , 161-21	6 0.4	
12	BOUNDARY DOMINATED VERSUS BULK DOMINATED REGIME IN OPTICAL SPACE-TIME COMPLEXITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1994, 04, 1281-1295	2	1
11	ADAPTIVE RECOGNITION OF CHAOS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1994 , 04, 1275-1280	2	3
10	Adaptive Recognition of a Chaotic Dynamics. <i>Europhysics Letters</i> , 1994 , 26, 327-332	1.6	54
9	Pattern formation and competition in photorefractive oscillators. <i>Chaos</i> , 1994 , 4, 491-498	3.3	4
8	Modeling excitable media by a one variable cellular automaton: Application to the cardiac case. <i>Chaos</i> , 1994 , 4, 557-561	3.3	2
7	Mutually recursive method to detect and remove noise in chaotic dynamics 1994 , 2242, 130		1
6	Transition from boundary- to bulk-controlled regimes in optical pattern formation. <i>Physical Review Letters</i> , 1993 , 70, 2277-2280	7.4	66
5	Periodic and chaotic alternation in systems with imperfect O(2) symmetry. <i>Physical Review Letters</i> , 1992 , 69, 3723-3726	7.4	26
4	Patterns, space-time chaos and topological defects in nonlinear optics. <i>Physica D: Nonlinear Phenomena</i> , 1992 , 61, 25-39	3.3	13
3	Controlling Spatiotemporal Chaos: The Paradigm of the Complex Ginzburg-Landau Equation181-195		
2	Interlayer Hebbian plasticity induces first-order transition in multiplex networks. <i>New Journal of Physics</i> ,	2.9	6
1	Combining complex networks and data mining: why and how		1